matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikElastizität/Konditionszahl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Elastizität/Konditionszahl
Elastizität/Konditionszahl < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elastizität/Konditionszahl: rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 23.05.2009
Autor: Kinghenni

Aufgabe
beispiel:
Addition x1, x2 ∈ [mm] \IR [/mm] \ {0}
y = f (x1, x2) = x1 + x2
k1 [mm] =\bruch{\partial f}{\partial x1}\bruch{x1}{f}=1\bruch{x1}{x1+x2} [/mm]

so meine frage ist nun:
was bedeutet dieses zeichen: [mm] \partial [/mm]
und wie errechne ich [mm] \bruch{\partial f}{\partial x1} [/mm]

        
Bezug
Elastizität/Konditionszahl: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 23.05.2009
Autor: angela.h.b.


> beispiel:
> Addition x1, x2 ∈ [mm]\IR[/mm] \ {0}
> y = f (x1, x2) = x1 + x2
>  k1 [mm]=\bruch{\partial f}{\partial x1}\bruch{x1}{f}=1\bruch{x1}{x1+x2}[/mm]

> und wie errechne ich [mm]\bruch{\partial f}{\partial x1}[/mm]  

Hallo,

[mm] \bruch{\partial f}{\partial x_1} [/mm] bedeutet, daß Du die Funktion f partiell nach [mm] x_1 [/mm] ableiten sollst.

Das geht so: Du tust so, als wäre [mm] x_2 [/mm] eine Zahl und leitest nach [mm] x_1 [/mm] ab.

Gruß v. Angela




Bezug
                
Bezug
Elastizität/Konditionszahl: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:59 Sa 23.05.2009
Autor: Kinghenni

Aufgabe
Zeigen Sie, dass die Nullstellenbestimmung von
[mm] ax^2 [/mm] + bx + c = 0
schlecht konditioniert ist, falls [mm] (b^2 [/mm] − 4ac) [mm] \ge [/mm] 0 klein ist.

dachte jetzt eig das wäre einfach aber ich komm nicht drauf

erste schritt wär ja

[mm] \bruch{(2ax+b)x}{ax^2+bx+c} [/mm] soll größer 1 sein
aber wie mach ich jetzt weiter?

Bezug
                        
Bezug
Elastizität/Konditionszahl: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:49 So 24.05.2009
Autor: Kinghenni

in einem buch hab ich dazu gefunden das von [mm] ax^2+bx+c=0 [/mm]
der [mm] k_{abs}=\bruch{1}{2a x_{1,2}} [/mm] ist (kehrwert der ableitung)
aber nach definition ist [mm] k_{abs}=f' [/mm]
hat da jemand ne erklärung dazu?

Bezug
                                
Bezug
Elastizität/Konditionszahl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 26.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Elastizität/Konditionszahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 So 24.05.2009
Autor: angela.h.b.

Hallo,

wenn ich Dir im Moment auch nicht weiterhelfen kann, so will ich Dir, weil ich mich anfangs eingemischt hatte,  wenigstens sagen, woran das liegt:
ich müßte einiges nachlesen, Numerik hab' ich überhaupt nicht griffbereit.

Ich frage mich, wie "schlecht konditioniert" eigentlich definiert ist.
Dunkel habe ich im Hinterkopf "Konditionszahl größer 1".

Woraus sich gleich ergibt: was genau war nochmal die Konditionszahl?

Dann schreibst Du "Nullstellenbestimmung von [mm] ax^2+bx+c=0" [/mm] .
Aber fehlt nicht irgendwie der Algorithmus, mit dem Du die Nullstelle bestimmst?
Da wäre doch verschiedenes denkbar.

Das sind die Rätsel, die die Aufgabe für mich numerisch nicht sehr gebildeten Menschen birgt.

Aber vielleicht kannst Du den Sachen ja mal auf den Grund gehen.

Gruß v. Angela






Bezug
                                
Bezug
Elastizität/Konditionszahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 So 24.05.2009
Autor: Kinghenni

ist ja nicht schlimm das du mir nicht weiterhelfen kannst
ja also den algorithmus, hab ich in der anderen mitteilung drin
und wenn ich jetzt bei mir für x das einsetze kommt eben raus das die konditionszahl gegen unendlich geht (ja es war bedingung >0 für schlecht konditioniert)
das würde ja alles passen, nur ich hab ka warum sie den kehrwert von f' genommen haben anstatt f'

Bezug
                        
Bezug
Elastizität/Konditionszahl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 25.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Elastizität/Konditionszahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 So 24.05.2009
Autor: Kinghenni

vll bin ich einfach falsch vorgegangen:
muss man vll die form nehmen?
[mm] x1,2=\bruch{-b\pm\wurzel{b^2-4ac}}{2a} [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]