Elektron mit Spin im B-Feld < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 18:28 So 02.02.2014 | Autor: | link963 |
Aufgabe | Gegeben sei ein Elektron. Als einzigen Freiheitsgrad betrachten wir dessen Spineinstellung, d. h., der Hilbertraum ist [mm] $\mathcal{H}=\mathbb{C}^2$. [/mm] Der Hamiltonoperator dieses Systems ist [mm] $$\hat [/mm] H = [mm] \hat{\vec\mu}\cdot\vec [/mm] B, [mm] \quad \hat{\vec\mu} [/mm] = [mm] \frac{e}{mc}\hat{\vec S},$$ [/mm] wobei [mm] $\vec{B} [/mm] = [mm] B\vec{e_x}$ [/mm] ein äußeres Magnetfeld ist und [mm] $\hat{\vec S}$ [/mm] der Spinoperator mit den Komponenten [mm] $$\hat{S_k}=\frac{\hbar}{2}\sigma_k \quad \text{mit} \quad \sigma_x [/mm] = [mm] \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \sigma_y [/mm] = [mm] \begin{bmatrix} 0 & -i\\ i & 0 \end{bmatrix}, \sigma_z [/mm] = [mm] \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}. [/mm] $$
a) Schreiben Sie [mm] $\hat [/mm] H$ explizit als [mm] $2\times [/mm] 2$-Matrix auf. Berechnen Sie die Eigenwerte und geben Sie eine orthonormierte Basis aus Eigenvektoren sowie die Spektralzerlegung in Matrixschreibweise an.
[mm] \\ [/mm]
b) Bestimmen Sie die Zeitentwicklung [mm] $\psi [/mm] (t)$ des Anfangszustands [mm] $\psi [/mm] (0) = [mm] \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ [/mm] ("Spin aufwärts"). Geben Sie das Ergebnis wieder als Spaltenvektor an.
[mm] \\
[/mm]
c) Berechnen Sie für [mm] $\psi(t)$ [/mm] aus b) die Wahrscheinlichkeit dafür, dass man bei einer Messung von [mm] $S_z$ [/mm] zur Zeit $t$ die Messwerte [mm] $\hbar [/mm] /2$ bzw. [mm] $-\hbar [/mm] /2$ erhält.
[mm] \\
[/mm]
d) Berechnen Sie für [mm] $\psi(t)$ [/mm] aus b) die Erwartungswerte [mm] $\langle\hat{S_k}\rangle_{\psi(t)}$ [/mm] von [mm] $\hat{S_k}, [/mm] k=x,y,z$, in Abhängigkeit von $t$. Welche Bewegung führt der Vektor [mm] $(\langle\hat{S_x}\rangle_{\psi(t)}, \langle\hat{S_y}\rangle_{\psi(t)}, \langle\hat{S_z}\rangle_{\psi(t)})$ [/mm] der Erwartungswerte aus? |
Hallo Mathe- und Physikfans,
hier handelt es sich um eine alte Klausuraufgabe. Für Korrekturen und Hinweise bin ich sehr dankbar.
Erstmal die Teilaufgaben a) und b):
zu a)
Wegen [mm] $\vec{B}=B\vec{e_x}$ [/mm] ist [mm] $\hat{H} [/mm] = [mm] \omega\hat{S_x} [/mm] = [mm] \frac{\hbar}{2}\cdot\omega\pmat{ 0 & 1 \\ 1 & 0 } [/mm] = [mm] \pmat{ 0 & \frac{\hbar}{2}\cdot\omega \\ \frac{\hbar}{2}\cdot\omega & 0 }$ [/mm] mit [mm] $\omega [/mm] := [mm] \frac{eB}{mc}$. [/mm] Mit der stationären Schrödingergleichung [mm] $\hat{H}\psi [/mm] = [mm] \lambda\psi$ [/mm] muss [mm] det$\pmat{ -\lambda & \frac{\hbar}{2}\cdot\omega \\ \frac{\hbar}{2}\cdot\omega & -\lambda }=0$ [/mm] und damit [mm] $\lambda_{\pm} [/mm] = [mm] \pm\frac{\hbar}{2}\cdot\omega.$
[/mm]
Mit [mm] $\pmat{ -\lambda & \frac{\hbar}{2}\cdot\omega \\ \frac{\hbar}{2}\cdot\omega & -\lambda }\psi [/mm] = 0 ergeben sich die normierten Eigenvektoren [mm] $\psi_+ [/mm] = [mm] \frac{1}{\sqrt{2}}\vektor{1\\1}$ [/mm] für [mm] $\lambda_+$ [/mm] und [mm] $\psi_- [/mm] = [mm] \frac{1}{\sqrt{2}}\vektor{1\\-1}$ [/mm] für [mm] $\lambda_-$. [/mm] Damit die orhtonormierte Basis [mm] $(\frac{1}{\sqrt{2}}\vektor{1\\1},\frac{1}{\sqrt{2}}\vektor{1\\-1})$ [/mm] und die Spektralzerlegung [mm] $\hat{H} [/mm] = [mm] \frac{\hbar}{4}\cdot\omega\pmat{1 & 1\\ 1 & 1} [/mm] - [mm] \frac{\hbar}{4}\cdot\omega\pmat{1 & -1\\ -1 & 1}$.
[/mm]
zu b)
Mit der Basis aus a) schreibt sich der Anfangszustand [mm] $\psi(0) [/mm] = [mm] \vektor{1\\0} [/mm] = [mm] \frac{1}{\sqrt{2}}\psi_+ [/mm] + [mm] \frac{1}{\sqrt{2}}\psi_-$. [/mm] Die Zeitentwicklung: [mm] $\psi(t) [/mm] = [mm] \hat{U}\psi(0)$ [/mm] mit dem Zeitentwicklungsoperator [mm] $\hat{U} [/mm] = [mm] e^{-\frac{i}{\hbar}t\hat{H}}$. [/mm] Also [mm] $$\psi(t) [/mm] = [mm] \frac{1}{\sqrt{2}}(e^{-\frac{i}{2}\omega t}\psi_+ [/mm] + [mm] e^{\frac{i}{2}\omega t}\psi_-) [/mm] = [mm] \frac{1}{2}\vektor{e^{-\frac{i}{2}\omega t}+e^{\frac{i}{2}\omega t} \\ e^{-\frac{i}{2}\omega t}-e^{\frac{i}{2}\omega t}}=\vektor{\cos\frac{\omega}{2}t \\ i\sin\frac{\omega}{2}t}.$$
[/mm]
Ist das soweit korrekt?
Viele Grüße
link963
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:20 Di 04.02.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|