matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAxiomatische MengenlehreElement von und Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Axiomatische Mengenlehre" - Element von und Ordnung
Element von und Ordnung < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Element von und Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Mo 13.11.2006
Autor: harry_hirsch

Aufgabe
Sei [mm] \IQ(\wurzel{2}) [/mm] := [mm] {a+b\wurzel{2}; a,b \in \IQ} [/mm]
Zeige, dass [mm] \wurzel{3} \not\in \IQ(\wurzel{2}) [/mm] und dass [mm] \IQ(\wurzel{2}) [/mm] nicht ordnungsvollstaendig ist.

Ich weiß nicht, wie ich zeigen kann, dass [mm] \wurzel{3} \not\in \IQ(\wurzel{2}) [/mm] ist! Was heißt das überhaupt? Egal was ich für a, b einsetze, es kann nie [mm] \wurzel{3} [/mm] rauskommen, oder was? Und mit der Ordnungsvollstaendigkeit hab ich auch so meine Probleme.
Kann mir jemand ein paar Denkanstöße geben?

Vielen Dank schon mal im Voraus!

Ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
Element von und Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Di 14.11.2006
Autor: angela.h.b.


> Sei [mm]\IQ(\wurzel{2})[/mm] := [mm]{a+b\wurzel{2}; a,b \in \IQ}[/mm]
>  Zeige,
> dass [mm]\wurzel{3} \not\in \IQ(\wurzel{2})[/mm] und dass
> [mm]\IQ(\wurzel{2})[/mm] nicht ordnungsvollstaendig ist.
>  Ich weiß nicht, wie ich zeigen kann, dass [mm]\wurzel{3} \not\in \IQ(\wurzel{2})[/mm]
> ist! Was heißt das überhaupt? Egal was ich für a, b
> einsetze, es kann nie [mm]\wurzel{3}[/mm] rauskommen, oder was?

Hallo,

ja, man will zeigen, daß [mm] \wurzel{3} \not\in \IQ(\wurzel{2}). [/mm]

Das bedeutet, für kein [mm] (a,b)\in \IQ^2 [/mm] ist [mm] \wurzel{3}=a+b\wurzel{2}. [/mm]

Das würde ich per Widerspruch beweisen. Nimm an, es gäbe a,b mit

[mm] \wurzel{3}=a+b\wurzel{2}. [/mm]

Das kannst Du zu einem Widerspruch führen, welcher darauf basiert, daß [mm] \wurzel{2} [/mm] nicht in [mm] \IQ [/mm] liegt. Am besten, Du quadrierst die Gleichung erstmal.


Und

> mit der Ordnungsvollstaendigkeit hab ich auch so meine
> Probleme.
>  Kann mir jemand ein paar Denkanstöße geben?

Möglicherweise:

Ist es so, daß "ordnungsvollständig" äquivalent damit ist, daß jede nach unten beschränkte Teilmenge ein Infimum hat???

Wenn das so ist, könntest Du vielleicht die Menge aller [mm] x\in \IQ(\wurzel{2}) [/mm] betrachten mit [mm] x>\wurzel{3} [/mm]  (für irgendetwas haben die doch nach [mm] \wurzel{3} [/mm] gefragt...), und zeigen, daß jedes angenommene Infimum keines ist, weil man immer noch ein Element zwischen [mm] \wurzel{3} [/mm] und dem Möchtegerninfimum findet. Ich hab's aber nicht durchgeführt, ist nur so eine Idee.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]