matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis# Elemente von M
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - # Elemente von M
# Elemente von M < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

# Elemente von M: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:00 Do 17.11.2005
Autor: Didi

Die Menge M ist endlich. Für diese Menge M gebe es eine injektive, aber nicht surjektive Abbildung von der Potenzmenge P(M) in das kartesische Produkt MxM.
Wie viele Elemente hat M?

Ich weiß, dass eine n-elementige Menge [mm] 2^n [/mm] Elemente hat. Wie ist das aber, wenn ich das Produkt von zwei Mengen habe? (Ist das eigentlich das Kreuzprodukt? Muss ich das vorher ausrechnen?)

Als Tipp ist gegeben, dass man die Fragestellung in eine Ungleichung übersetzen kann.
Sicher steht dann auf der einen Seite [mm] 2^n> [/mm] ???. Aber was steht auf der rechten Seite?

Danke schon mal. Ich habe die Frage auf keinen anderen Seiten gestellt.

        
Bezug
# Elemente von M: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Do 17.11.2005
Autor: angela.h.b.


> Die Menge M ist endlich. Für diese Menge M gebe es eine
> injektive, aber nicht surjektive Abbildung von der
> Potenzmenge P(M) in das kartesische Produkt MxM.
> Wie viele Elemente hat M?

Hallo und

>  
> Ich weiß, dass eine n-elementige Menge [mm]2^n[/mm] Elemente hat.

oh nein, oh nein! Das wäre absurd, bzw. nur in den wenigsten Fallen zutreffend...
Aber Du meinst natürlich das richtige: Wenn |M|=n, ist [mm] |P(M)|=2^n. [/mm]

Mit dem kartesischen Produkt MxM ist die Menge der Paare gemeint, deren erste und zweite Komponente aus M ist, also MxM={ (a,b) : a,b [mm] \in [/mm] M}

Wie ist also die Mächtigkeit von MxM?

Die Abbildung geht von P(M) [mm] \to [/mm] MxM.

Sie ist injektiv, d.h. In MxM sind mindestens soviele Elemente wie in P(M).
Sie ist nicht surjektiv, also sind in MxM sogar mehr Elemente als in P(M).

> Als Tipp ist gegeben, dass man die Fragestellung in eine
> Ungleichung übersetzen kann.
>  Sicher steht dann auf der einen Seite [mm]2^n>[/mm] ???

Es steht da [mm] 2^n[b]<[/b]... [/mm]   Was bei den Pünktchen hinkommt, weißt du jetzt, oder?


Wenn ja, hast Du bald ein passendes N gefunden.

Ich habe die große Befürchtung, daß die Aufgabe damit nicht erledigt ist.
Du wirst beweisen müssen, daß für n>N  [mm] 2^n \ge n^2 [/mm] ist...
Induktion natürlich.

Gruß v. Angela

. Aber was

> steht auf der rechten Seite?
>  
> Danke schon mal. Ich habe die Frage auf keinen anderen
> Seiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]