matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesEllipse aus 5 Raumpunkten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Ellipse aus 5 Raumpunkten
Ellipse aus 5 Raumpunkten < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ellipse aus 5 Raumpunkten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Sa 02.01.2010
Autor: cjb

Aufgabe
Wie bestimmt man die Brennpunkte und die
Halbachsen a,b einer Ellipse in der u-v-Ebene,
wenn man die Koordinaten $ [mm] (u_i/v_i) [/mm] $ von fünf
Ellipsenpunkten kennt ?

Wie geht das?


Konkretisierung

Ich gehe aus von folgenden Punkten die alle in einer Ebene im Raum liegen.
P1 1.0@5.0@1.0
P2 3.0@7.0@3.0
P3 5.0@5.0@1.0
P4 4.0@6.73205080756888@2.73205080756888
P5 4.5@6.32287565553229@2.3228756555323.

Drehe diese parallel zur x-y-ebene und erhalte
P1 1.0@4.24264068711929
P2 3.0@7.07106781186548
P3 5.0@4.24264068711929
P4 4.0@6.69213042990246
P5 4.5@6.11346938050626

      $ \ [mm] ax^2 [/mm] + [mm] 2\,b\,x\,y [/mm] + [mm] c\,y^2 [/mm] + [mm] 2\,d\,x [/mm] + [mm] 2\,e\,y [/mm] + f\ =\ 0 $

mit a = 1 ergibt sich

      $ \ [mm] 2\,b\,x\,y [/mm] + [mm] c\,y^2 [/mm] + [mm] 2\,d\,x [/mm] + [mm] 2\,e\,y [/mm] + f\ =\ [mm] -x^2 [/mm] $

  Matrix 5x5                                 ErsatzSpalte
2 * x1 * y1 ;  y1 * y1 ; 2 * x1 ; 2 * y1; 1           -(x1 * x1)
2 * x2 * y2 ;  y2 * y2 ; 2 * x2 ; 2 * y2; 1           -(x2 * x2)
2 * x3 * y3 ;  y3 * y3 ; 2 * x3 ; 2 * y3; 1           -(x3 * x3)
2 * x4 * y4 ;  y4 * y4 ; 2 * x4 ; 2 * y4; 1           -(x4 * x4)
2 * x5 * y5 ;  y5 * y5 ; 2 * x5 ; 2 * y5; 1           -(x5 * x5)

Matrix
#(8.48528137423857 18.0 2.0 8.48528137423857 1)
#(42.4264068711929 50.0 6.0 14.142135623731 1)
#(42.4264068711929 18.0 10.0 8.48528137423857 1)
#(53.5370434392197 44.7846096908265 8.0 13.3842608598049 1)
#(55.0212244245563 37.3745078663875 9.0 12.2269387610125 1)

Ersatzvektor
#(-1.0)
#-(9.0)
#(-25.0)
#(-16.0)
#(-20.25)

Ergebnisvektor := Matrix invers * Ersatzvektor
ErgebnisVektor
#(0)
#(0.5)
#(-3.0)
#(-2.1213203435596)
#(14)

In obige Formel eingesetzt ergibt das
      $ \ [mm] x^2 [/mm] + [mm] \bruch{1}{2}\,y^2 [/mm] - [mm] 6\,x [/mm] - [mm] 4.242640687119\,y [/mm] + 14\ =\ 0 $

Test mit P1 in der x-y-Ebene funktioniert = 0

das müsste jetzt doch meine Ellipsengleichung sein.


Mit welcher Formel komme ich von dieser Gleichung auf meine Brennpunkte bzw. auf die Haupt und Nebenlänge ?

Sobald die Brennpunkte und die Haupt und Nebenlänge berechnet sind, drehe ich die Brennpunkte wieder zurück in die ursprüngliche Ebene.

Danke für die Mühe
cjb

        
Bezug
Ellipse aus 5 Raumpunkten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Mi 06.01.2010
Autor: Al-Chwarizmi


> Wie bestimmt man die Brennpunkte und die
>  Halbachsen a,b einer Ellipse in der u-v-Ebene,
>  wenn man die Koordinaten [mm](u_i/v_i)[/mm] von fünf
>  Ellipsenpunkten kennt ?
>  Wie geht das?
>  
> Konkretisierung
>  
> Ich gehe aus von folgenden Punkten die alle in einer Ebene
> im Raum liegen.
>  P1 1.0@5.0@1.0
>  P2 3.0@7.0@3.0
>  P3 5.0@5.0@1.0
>  P4 4.0@6.73205080756888@2.73205080756888
>  P5 4.5@6.32287565553229@2.3228756555323.
>
> Drehe diese parallel zur x-y-ebene und erhalte
>  P1 1.0@4.24264068711929
>  P2 3.0@7.07106781186548
>  P3 5.0@4.24264068711929
>  P4 4.0@6.69213042990246
>  P5 4.5@6.11346938050626
>  
> [mm]\ ax^2 + 2\,b\,x\,y + c\,y^2 + 2\,d\,x + 2\,e\,y + f\ =\ 0[/mm]
>  
> mit a = 1 ergibt sich
>  
> [mm]\ 2\,b\,x\,y + c\,y^2 + 2\,d\,x + 2\,e\,y + f\ =\ -x^2[/mm]
>  
> Matrix 5x5                                 ErsatzSpalte
>  2 * x1 * y1 ;  y1 * y1 ; 2 * x1 ; 2 * y1; 1           -(x1
> * x1)
>  2 * x2 * y2 ;  y2 * y2 ; 2 * x2 ; 2 * y2; 1           -(x2
> * x2)
>  2 * x3 * y3 ;  y3 * y3 ; 2 * x3 ; 2 * y3; 1           -(x3
> * x3)
>  2 * x4 * y4 ;  y4 * y4 ; 2 * x4 ; 2 * y4; 1           -(x4
> * x4)
>  2 * x5 * y5 ;  y5 * y5 ; 2 * x5 ; 2 * y5; 1           -(x5
> * x5)
>  
> Matrix
>  #(8.48528137423857 18.0 2.0 8.48528137423857 1)
>  #(42.4264068711929 50.0 6.0 14.142135623731 1)
>  #(42.4264068711929 18.0 10.0 8.48528137423857 1)
>  #(53.5370434392197 44.7846096908265 8.0 13.3842608598049
> 1)
>  #(55.0212244245563 37.3745078663875 9.0 12.2269387610125
> 1)
>  
> Ersatzvektor
>  #(-1.0)
>  #-(9.0)
>  #(-25.0)
>  #(-16.0)
>  #(-20.25)
>  
> Ergebnisvektor := Matrix invers * Ersatzvektor
>  ErgebnisVektor
>  #(0)
>  #(0.5)
>  #(-3.0)
>  #(-2.1213203435596)
>  #(14)
>  
> In obige Formel eingesetzt ergibt das
>        
>   [mm]\ x^2 + \bruch{1}{2}\,y^2 - 6\,x - 4.242640687119\,y + 14\ =\ 0[/mm]
>  

> Test mit P1 in der x-y-Ebene funktioniert = 0
>  
> das müsste jetzt doch meine Ellipsengleichung sein.
>  
>
> Mit welcher Formel komme ich von dieser Gleichung auf meine
> Brennpunkte bzw. auf die Haupt und Nebenlänge ?
>  
> Sobald die Brennpunkte und die Haupt und Nebenlänge
> berechnet sind, drehe ich die Brennpunkte wieder zurück in
> die ursprüngliche Ebene.
>  
> Danke für die Mühe
>  cjb


Hallo cjb,

gehen wir also von der Gleichung

      $\ [mm] x^2 [/mm] + [mm] \bruch{1}{2}\,y^2 [/mm] - [mm] 6\,x [/mm] - [mm] 4.2426\,y [/mm] + 14\ =\ 0$

aus. Hier ist nun zuerst quadratische Ergänzung bei den
Termen mit x und bei denen mit y angesagt:

      $\ [mm] \left(x^2- 6\,x\red{\,+\,9}\right) [/mm]  + [mm] \bruch{1}{2}\,\left(y^2- 8.4852\,y\red{\,+\,18.000}\right) [/mm] + 14\ =\ [mm] 0\blue{\,+\,9\,+\,9}$ [/mm]

(rechts zum Ausgleich gleich viel addiert)

      $\ [mm] \left(x-3\right)^2 [/mm]  + [mm] \bruch{1}{2}\,\left(y- 4.2426\right)^2\ [/mm] =\ 4$

Jetzt durch 4 dividieren, um rechts eine 1 zu erzeugen:

      $\ [mm] \frac{\left(x-3\right)^2}{4} [/mm]  + [mm] \bruch{\left(y- 4.2426\right)^2}{8}\,\ [/mm] =\ 1$

Vergleich mit der Formel:

      $\ [mm] \frac{\left(x-x_M\right)^2}{b^2} [/mm]  + [mm] \bruch{\left(y- y_M\right)^2}{a^2}\,\ [/mm] =\ 1$

(a soll die größere Halbachse sein; sie ist in diesem
Fall parallel zur y-Achse !)

Diese Ellipse hat also den Mittelpunkt M(3/4.243) und
die Halbachsen [mm] a=\sqrt{8}\approx [/mm] 2.828 und b=2. Die Brennpunkte
liegen auf der Geraden $x=3$ jeweils um  [mm] e=\sqrt{a^2-b^2}=2 [/mm]
oberhalb bzw. unterhalb von M, also:

       $\ [mm] F_1(3/6.243)\qquad F_2(3/2.243)$ [/mm]

Da die Ellipse hier etwas speziell liegt, war die Rechnung
recht einfach. Im allgemeinen Fall (gedrehte Ellipse)
bräuchte man eine weitere Koordinatentransformation.

Nachbemerkung:

Ich frage mich im Nachhinein, ob für deine Zwecke die
Darstellung des Objektes "Ellipse im Raum" mit Hilfe der
Brennpunkte tatsächlich so geschickt ist. Eigentlich würde
es genügen, den Mittelpunkt M und die Vektoren [mm] \overrightarrow{MS_1} [/mm] und  
[mm] \overrightarrow{MS_3} [/mm] von M zu einem Hauptscheitel [mm] S_1 [/mm] und zu einem Neben-
scheitel [mm] S_3 [/mm] anzugeben. Alternativ kämen auch zwei
konjugierte Radiusvektoren in Frage.

LG    Al-Chw.





Bezug
        
Bezug
Ellipse aus 5 Raumpunkten: Rückfrage
Status: (Frage) überfällig Status 
Datum: 08:47 Fr 05.03.2010
Autor: schanir

Guten Tag,

meine Frage ist, wie kann ich aus 5 Punkten in der x-y Ebene die Entsprechende Ellipse berechen. Alle 5 Punkte liegen auf der Ellipse. Die Hauptachsen der Ellipse liegen nicht parallel zu den Achsen des Koordinatensystem.
Ich benötige die Länge und Lage ( Winkel) der Hauptachsen (a & b).

Vielen Dank im voraus!

Bezug
                
Bezug
Ellipse aus 5 Raumpunkten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 13.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]