Endlich viele Unstetigkeiten 2 < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:37 Sa 11.11.2017 | Autor: | Reynir |
Hallo,
ich habe die Funktion:
[mm] f_n(x):= \begin{cases} 1, & \mbox{falls } x \in \{ r_1,...,r_n\} \\ 0, & \mbox{sonst } \end{cases}$. [/mm]
Es wird zudem gesetzt: [mm] $\mathbb{Q}\cap \left[0,1\right]=\{r_1,...,r_n,...\}$. [/mm] Dass die Funktion Riemann-integrierbar ist, ist mir klar. Könnte Folgendes gehen? Man sagt, die Unstetigkeitsstellen fallen weg bei der Bildung des Integrals und da die Funktion fast überall 0 ist, ist das Integral 0. Kann ich formal zeigen, dass die Unstetigkeitsstellen rausfallen?
Viele Grüße
Reynir
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:09 Sa 11.11.2017 | Autor: | Stala |
Hallo,
möchtest du nun Riemann oder Lebesgue integrieren?
Für jedes [mm] n [/mm] ist [mm] \( f_n \) [/mm] Riemann-integrierbar, da ja nur endlich viele Unstetigkeitsstellen. Die Grenzfunktion für n [mm] \to \infty [/mm] wäre es hingegen nicht mehr.
Ich würde so argumentieren: Sei [mm] \( R:=\{r_1, \ldots r_n\} \).
[/mm]
[mm] \( \int_{[0,1]} f_n(d) \, d\lambda [/mm] x = 0 [mm] \cdot \lambda\{x \, | \, x \in [0,1] \backslash R \} [/mm] + 1 [mm] \cdot \lambda(R) [/mm] = 0 + [mm] 1\cdot [/mm] 0 = 0
und da auf kompakten Intervallen Riemann- und Lebesgueintegral übereinstimmen, sofern die Funktion Riemann-integrierbar ist, ist auch das Riemann-Integral Null.
VG
Stala
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:17 Sa 18.11.2017 | Autor: | Reynir |
Hallo und sorry für die späte Rückmeldung,
mein Internet hat wieder mal gestreikt. Ich will es eiegtnlich Riemann integrieren, aber das Lebesgueargument leuchtet mir schon mal ein. Fällt dir auch ein Argument für Riemann ein, ohne den Umweg über Lebesgue? Ich frage nur, weil ich mich breit aufstellen will, bei meiner Abschlussprüfung, für die ich lerne.
Danke für deine Hilfe
Reynir
|
|
|
|
|
Hiho,
du schriebst:
> Dass die Funktion Riemann-integrierbar ist, ist mir klar.
Dann ist dir hoffentlich auch klar, dass du jede Riemann-Integrierbare Funktion an endlich vielen Funktionswerten ändern kannst, ohne den Wert es Integrals zu ändern.
D.h. wir setzen:
$ [mm] \overline{f}_n(x):= \begin{cases} 0, & \mbox{falls } x \in \{ r_1,...,r_n\} \\ f(x), & \mbox{sonst } \end{cases}$
[/mm]
Dann unterscheiden sich [mm] \overline{f}_n [/mm] und [mm] f_n [/mm] für alle [mm] $n\in \IN$ [/mm] nur an endlich vielen Stellen und daraus folgt:
[mm] $\int_0^1 f_n(x) \; [/mm] dx = [mm] \int_0^1 \overline{f}_n(x) \; [/mm] dx = [mm] \int_0^1 [/mm] 0 [mm] \; [/mm] dx = 0$
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:07 Mi 22.11.2017 | Autor: | Reynir |
Hallo Gono,
vielen Dank für deine Antwort!
Viele Grüße
Reynir
|
|
|
|