matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperEndliche Gruppe, Normalisator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Endliche Gruppe, Normalisator
Endliche Gruppe, Normalisator < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endliche Gruppe, Normalisator: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:15 Do 17.03.2011
Autor: Lippel

Aufgabe
Sei [mm] $G\:$ [/mm] endliche Gruppe, $H [mm] \leq [/mm] G$ Untergruppe und [mm] $N_H$ [/mm] der Normalisator von [mm] $H\:$ [/mm] in G, [mm] $M:=\bigcup_{g \in G}gHg^{-1}$ [/mm]

Zeigen Sie:
(i) $ord [mm] \: [/mm] M [mm] \leq (G:N_H) \cdot ord\: [/mm] H$
(ii) $H [mm] \not= [/mm] G [mm] \Rightarrow [/mm] M [mm] \not= [/mm] G$

Hallo,

ich verzweifle ein wenig an dieser Aufgabe. Ich dachte eigentlich ich hätte ein Ergebnis für (i), wenn ich dieses jedoch für (ii) anwende, kommt da das falsche raus. Ich würde mich freuen, wenn mir jemand weiter helfen könnte:

(i) M ist ja gerade die Bahn von [mm] $H\:$ [/mm] unter der Konjugationsoperation von [mm] $G\:$ [/mm] auf der Menge [mm] $X\:$ [/mm] der Untergruppen von [mm] $G\:$. [/mm]
Bezeichne [mm] $GH\:$ [/mm] diese Bahn und [mm] $G_H$ [/mm] die Isotropiegruppe von H unter der Konjugationsoperation von [mm] $G\:$ [/mm] auf [mm] $X\:$ [/mm]

Es gilt dann: $ord [mm] \: [/mm] M = ord [mm] \: [/mm] GH = [mm] (G:G_H)$ [/mm]
Es ist ja [mm] $G_H=\{x \in G \:|\: xHx^{-1}=H\}$ [/mm]
Das heißt die Isotropiegruppe stimmt gerade überein mit dem Normalisator [mm] $N_H=\{x \in G \:|\: xH = Hx\}$ [/mm]
[mm] $\Rightarrow [/mm] ord [mm] \: [/mm] M = [mm] (G:N_H) \Rightarrow [/mm] ord [mm] \: [/mm] M [mm] \leq (G:N_H) \cdot ord\: [/mm] H$, da [mm] $ord\: [/mm] H [mm] \geq [/mm] 1$
Damit wäre (i) gezeigt.

(ii) Ich nehme an, [mm] $M=G\:$ [/mm] und möchte zeigen: [mm] $H=G\:$. [/mm] Damit wäre die Aussage gezeigt.
Mit $ord [mm] \: [/mm] M = [mm] (G:N_H)$ [/mm] aus (i) folgt, wenn [mm] $M=G\:$, [/mm] dass [mm] $ord\: N_H [/mm] = 1 [mm] \Rightarrow N_H=\{1\} \Rightarrow [/mm] gH [mm] \not=Hg \:\:\forall\:g \in [/mm] G [mm] \backslash\{1\}$ [/mm]
Würde jedoch [mm] $H=G\:$ [/mm] gelten, so müsste dies doch für alle $g [mm] \in [/mm] G$ gelten. Wo ist da mein Fehler?

Vielen Dank für die Hilfe!

LG Lippel

        
Bezug
Endliche Gruppe, Normalisator: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Sa 19.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]