matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieEndlichkeit Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Endlichkeit Integral
Endlichkeit Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endlichkeit Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:13 So 13.12.2009
Autor: XPatrickX

Aufgabe
Sei [mm] $B_R(0)\subset\IR^2, \quad R\in [/mm] (0,1)$.
Zeige:
[mm] $$\int_{B_R(0)} \left| \log\left(\log \frac{1}{|x|}\right)\right|^2 [/mm] dx < [mm] \infty$$ [/mm]

Hallo zusammen,

Ich muss zeigen, dass diese Funktion in [mm] L_2 [/mm] liegt. Wie kann ich hier sinnvoll vorgehen??

Danke :-)

        
Bezug
Endlichkeit Integral: erster schritt
Status: (Antwort) fertig Status 
Datum: 00:59 Di 15.12.2009
Autor: MatthiasKr

Hi,

> Sei [mm]B_R(0)\subset\IR^2, \quad R\in (0,1)[/mm].
>  Zeige:
>  [mm]\int_{B_R(0)} \left| \log\left(\log \frac{1}{|x|}\right)\right|^2 dx < \infty[/mm]
>  
> Hallo zusammen,
>  
> Ich muss zeigen, dass diese Funktion in [mm]L_2[/mm] liegt. Wie kann
> ich hier sinnvoll vorgehen??
>  
> Danke :-)

also, zunaechst mal ist diese funktion rotations-symmetrisch (haengt nur von $|x|$ ab) und daher kann man das integral auf ein eindim. integral zurueckfuehren. Schlage das zb. mal im forster, analysis 3, nach.

danach schauen wir weiter.

gruss
Matthias


Bezug
                
Bezug
Endlichkeit Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:11 Di 15.12.2009
Autor: XPatrickX

Hallo,

also im Forster AnaIII habe ich den folgenden Satz gefunden:

[mm] $$\int_{\rho\le |x|\le R} [/mm] f(|x|) d^nx = [mm] n\sigma_n \int_{\rho}^R f(r)r^{n-1}dr$$ [/mm]

[mm] \sigma_n=Volumen [/mm] der n-dim. Einheitskugel

Also bei mir:

$$...= [mm] 2*\sigma_2\int_0^R \left( \log(\log(\frac{1}{r})) \; \cdot r \right)^2 [/mm] dr$$


Ich kann zwar noch [mm] \log(1/r)=-\log(r) [/mm] schreiben. Aber ich weiß immer noch nicht wie ich nun die Endlichkeit zeigen kann...

Danke für deine Hilfe.

Bezug
                        
Bezug
Endlichkeit Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 16.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]