Endomorphismen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo, ich sitze hier vor einer Aufgabe und weiß absolut nicht wie ich da rangehen soll.
Sei V n-dimensionaler Vektorraum, sei f: V------V ein Endomorphismus mit [mm] f^2 [/mm] =0 Zeige: dim Bild (f) [mm] \le \bruch{n}{2}. [/mm]
Ist es denn wenigstens richtig, dass dim Bild(f) die Anzahl der linear unabhängigen Vektoren von f ist???
Ich habe mir überlegt, dass die Formel für obere Dreiecksmatrizen wahr ist, da wenn [mm] f^2 [/mm] =0 ist nur ein Koeffizient ungleich Null in der oberen Ecke stehen darf, wie z.B. [mm] \pmat{ 0 & 1 \\ 0 & 0 }
[/mm]
Aber es gibt ja auch noch andere Matrizen für die gilt [mm] f^2=0, [/mm] bei denen bin ich mir nicht so ganz sicher. Aber mein großes Problem ist wie ich das zeigen kann.
Und die zweite ist
Sei t [mm] \le \bruch{n}{2} [/mm] eine natürliche Zahl. Konstriere einen Endomorphismus f: [mm] K^n---------K^n [/mm] mit [mm] f^2=0 [/mm] und dim Bild (f)=t.
Für den 2x2 Fall wäre das ja wieder die Matrix von oben, aber ich habe keine Ahnung, wie ich das allgemein zeigen soll.
Wäre für hilfe echt dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:35 Mi 20.04.2005 | Autor: | Nam |
Hi,
1) Wenn du [mm]f: V \to V[/mm] mit [mm]f^2 = 0[/mm] hast, dann gilt ja:
[mm]f(f(x)) = 0 ~ \forall x \in V[/mm]
[mm]\Rightarrow f(x) \in Kern(f)[/mm]
[mm]\Rightarrow Bild(f) \subseteq Kern(f)[/mm]
[mm]\Rightarrow dim(Bild(f)) \leq dim(Kern(f))[/mm]
Aus [mm]n = dim(Kern(f)) + dim(Bild(f))[/mm] folgt nun, dass
[mm]2 dim(Kern(f)) \leq n \gdw dim(Kern(f)) \leq \frac{n}{2}[/mm]
2) ein konkretes Beispiel fällt mir leider auch nicht ein.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:30 Mi 20.04.2005 | Autor: | gymnozist |
Danke schön.
Das klingt sehr einleuchtend was du geschrieben hast. Wenn man das so machen kann glaube ich habe ich das verstanden.
Wenn mir jetzt noch jemand einen tip zu 2 geben könnte wäre das echt super, denn ich komme einfach nicht drauf.
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:47 Do 21.04.2005 | Autor: | Julius |
Hallo!
Also, für $n=10$ und $t=3$ wäre etwa
$A= [mm] \pmat{0 & 0 & 0 & 0 & 0& 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\}$
[/mm]
ein solche Beispiel.
Jetzt solltest du das Prinzip aber erkennen und die Aussage verallgemeinern können, oder?
Viele Grüße
Julius
|
|
|
|