Endomorphismus einsetzen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
mir liegt eine Aufgabe vor, deren Musterlösung ist nicht verstehe. Ich gebe nun die Aufgabe, die Musterlösung und dann mein Verständnisproblem an:
Aufgabe:
Es seien V ein n-dimensionaler Vektorraum über dem Körper [mm] \IK [/mm] und [mm] \phi [/mm] ein Endomorphismus von V. Weiter sei p [mm] \in \IK[x] [/mm] ein Polynom. Zeigen Sie:
Gilt [mm] p(\phi) [/mm] = [mm] id_V, [/mm] so ist p(c) = 1 für alle Eigenwerte c von [mm] \phi.
[/mm]
Musterlösung:
Sei p = [mm] a_0 [/mm] + [mm] a_1 [/mm] x + ... + [mm] a_k x^k. [/mm]
Zu jedem Eigenwert c von [mm] \phi [/mm] gibt es einen Vektor y [mm] \not= [/mm] 0 mit [mm] \phi(y) [/mm] = cy.
Dann gilt für alle i = 1, 2, ...: [mm] \phi^i(y) [/mm] = [mm] c^i [/mm] y.
Daraus folgt [mm] p(\phi)(y) [/mm] = [mm] a_0 [/mm] y + [mm] a_1 [/mm] c y + ... + [mm] a_k c^k [/mm] y = p(c)y. (wieso ist das gleich p(c)y?)
Wegen [mm] p(\phi) [/mm] = [mm] id_V [/mm] und y [mm] \not= [/mm] 0 gilt p(c) = 1.
Verständnisproblem:
Wie kommt man von [mm] p(\phi)(y) [/mm] = [mm] a_0 [/mm] y + [mm] a_1 [/mm] c y + ... + [mm] a_k c^k [/mm] y auf p(c)y?
Das verstehe ich absolut nicht. Sonst ist alles klar.
Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:22 Do 25.12.2008 | Autor: | SEcki |
> Wie kommt man von [mm]p(\phi)(y)[/mm] = [mm]a_0[/mm] y + [mm]a_1[/mm] c y + ... + [mm]a_k c^k[/mm]
> y auf p(c)y?
Auf der rechten Seite der ersten Gleichung muss man y nach rechts ausklammern, dann steht da noch [m]a_0 + a_1 c + \ldtos + a_k c^k[/m] als Koeffizient von y, was aber genau das gleiche ist, wie wenn man im Polynom x durch c "ersetzt".
SEcki
|
|
|
|