matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenEnergiemethoden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partial Differential Equations" - Energiemethoden
Energiemethoden < Partial Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

Energiemethoden: Idee
Status: (Frage) überfällig Status 
Date: 19:48 Mo 15/09/2014
Author: Laura22

Aufgabe
B:=B(0,1)\subset \mathbb{R}^{n} sei der offene Einheitsball im \mathbb{R}^n

[mm] \glqq .\grqq\ [/mm] euklidisches Skalarprodukt im \mathbb{R}^3 mit zugehöriger Norm |.|


Gegebenes Randwertproblem

\begin{cases} -\Delta u=-u + u^6 \text{ in } B\\ u=0 \text{ auf } \partial B \end{cases}

Für F: \bar{B} \rightarrow \mathbb{R}^3 gilt:


* F(x) := (x \cdot \nabla u)\nabla u - \frac{1}{2}|\nabla u|^2


* F \cdot x = \frac{1}{2}|\nabla u|^2, x \in \partial B


* div F = (x \cdot \nabla u)\Delta u -\frac{1}{2}|\nabla u|^2, x \in B


Angenommen es gibt eine Lösung u>0 in B. Es gilt zu zeigen, dass
(a) \int_B \! |\nabla u|^2 \, \mathrm{d}x = \int_B \! (-u^2 + u^7) \, \mathrm{d}x


(b) (k+1) \int_B \! u^{k}(x \cdot \nabla u)| \, \mathrm{d}x=-3 \int_B \! u^{k+1} \, \mathrm{d}x für k \in \mathbb{N}
(c) Folgern Sie einen Widerspruch mit dem Satz von Gauß, angewendet auf F.

Hallo zusammen :),

ich habe diese Aufgabe gerade bearbeitet und alles bis auf die Aufgabe (c) geschafft. Dort fehlt mir aber völlig der Durchblick. Man soll mit dem Satz von Gauß angewendet auf F einen Widerspruch folgern, d.h. ich betrachte

\int\limits_B \! \textrm{div } F(x) \, \mathrm{d}x = \int\limits_{\partial B} \! F(x) \cdot \nu(x) \, \mathrm{S}(x) \overset{\text{(Def. F(x))}}{=} \int\limits_{\partial B} \! ((x \cdot \nabla u)\nabla u - \frac{1}{2}|\nabla u|^2) \cdot \nu(x) \, \mathrm{S}(x)

und jetzt steh ich da und weiß nicht so wirklich, wo die Reise hin soll. Ich habe jetzt so viel versucht, dass ich einfach mal einen tollen Tipp bräuchte, um alleine weiter zu machen. Recht vielen Dank schon mal, falls sich jemand der Sache annimmt!!!

Liebe Grüße,
Laura

PS: Falls die Herleitungen der Aufgabenteile a) und b) auch relevant sein sollten, gebe ich diese natürlich sehr gerne mit an!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Energiemethoden: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 20:20 Mi 17/09/2014
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
View: [ threaded ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 22m 4. fred97
ULinAEw/Eigenwerte und Matrix
Status vor 10h 16m 7. Tobikall
UAnaR1Funk/L Beweis ohne Logarithmusdef.
Status vor 12h 48m 8. leduart
UAnaR1/Reaktion - erwünscht
Status vor 13h 26m 2. Infinit
USons/Punktwolken vergleichen?
Status vor 16h 13m 1. alex1992
UStoc/Beweis Signifikanzniveau
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]