Entwicklung Polynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:19 Mi 25.11.2009 | Autor: | bAbUm |
Aufgabe 1 | Entwicklung um [mm] x\hat [/mm] =1
[mm] x^3+2x^2-3x+1= [/mm] (x³-3x²+3x-1)*1 [mm] +5x^2-6x+2
[/mm]
[mm] x^3-3x^2+3x-1
[/mm]
------------
[mm] 5x^2-6x+2 [/mm]
[mm] 5x^2-6x+2= [/mm] (x²-2x+1)*5 +4x+3
[mm] 5x^2-10x-5
[/mm]
-----------
4x-3 |
Aufgabe 2 | f(x) = [mm] x^4 +5x^3-8x^2+1-(x-2)^3 [/mm]
a) Entwickeln Sie f jeweils um die Entwicklungspunkte [mm] x_1=1 [/mm] und [mm] x_2=-1
[/mm]
b) Stellen Sie das Polynom als Produkt von Linearfaktoren da |
Guten Tag
Bin gerade in die Thematik eingestiegen und hab da ein paar Fragen.
Und habe mit hoher Wahrscheinlichkeit mal wieder ein Brett vorm Kopf.
Meine Frage zu A1: Wie kommt man auf die jeweils farbig gekennzeichneten Werte?
Außerdem habe ich ein Polynom gegeben (A2)
Zunächst zu Teilaufgabe a)
Muss ich diese Ausfgabe angehen wie in A1 oder was ist sonst zu tun? Vielleicht könnte mir jemand ein Ansatz dazu geben oder ein Beispiel dazu vorrechnen.
Vieeeelen Dank schonmal vom mir
Gruß bAbUm
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:43 Mi 25.11.2009 | Autor: | bAbUm |
kann mi denn niemand helfen? :(
|
|
|
|
|
Hallo bAbUm,
> Entwicklung um [mm]x\hat[/mm] =1
>
> [mm]x^3+2x^2-3x+1=[/mm] (x³-3x²+3x-1)*1 [mm]+5x^2-6x+2[/mm]
> [mm]x^3-3x^2+3x-1[/mm]
> ------------
> [mm]5x^2-6x+2[/mm]
>
> [mm]5x^2-6x+2=[/mm] (x²-2x+1)*5 +4x+3
> [mm]5x^2-10x-5[/mm]
> -----------
> 4x-3
> f(x) = [mm]x^4 +5x^3-8x^2+1-(x-2)^3[/mm]
>
> a) Entwickeln Sie f jeweils um die Entwicklungspunkte [mm]x_1=1[/mm]
> und [mm]x_2=-1[/mm]
> b) Stellen Sie das Polynom als Produkt von Linearfaktoren
> da
> Guten Tag
>
> Bin gerade in die Thematik eingestiegen und hab da ein paar
> Fragen.
> Und habe mit hoher Wahrscheinlichkeit mal wieder ein Brett
> vorm Kopf.
>
>
> Meine Frage zu A1: Wie kommt man auf die jeweils farbig
> gekennzeichneten Werte?
>
Nun, wenn das Polynom um den Entwicklungspunkt [mm]\hat{x}=1[/mm]
dargestellt werden soll, dann schreibt sich das so:
[mm]x^3+2x^2-3x+1=a*\left(x-1\right)^{3}+b*\left(x-1\right)^{2}+c*\left(d-1\right)+d[/mm]
Weiterhin gilt:
[mm]\left(x-1\right)^{3}=x^{3}-3*x^{2}+3*x-1[/mm]
[mm]\left(x-1\right)^{2}=x^{2}-2*x+1[/mm]
>
> Außerdem habe ich ein Polynom gegeben (A2)
>
> Zunächst zu Teilaufgabe a)
> Muss ich diese Ausfgabe angehen wie in A1 oder was ist
> sonst zu tun? Vielleicht könnte mir jemand ein Ansatz dazu
> geben oder ein Beispiel dazu vorrechnen.
Die Teilaufgabe a) der zweiten Aufgabe ist genauso zu lösen wie A1.
>
> Vieeeelen Dank schonmal vom mir
>
> Gruß bAbUm
>
>
Gruss
MathePower
|
|
|
|