matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesEpsilon-Kugeln und das Innere
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Epsilon-Kugeln und das Innere
Epsilon-Kugeln und das Innere < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Kugeln und das Innere: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Sa 30.04.2011
Autor: xcrane

Hallo

Ich habe eine allgemeine Verständnisfrage zu Epsilon-Kugeln:
Eine Epsilonkugel ist ja so definiert:
(X,d) sei ein metrischer Raum, x [mm] \in [/mm] X und [mm] \varepsilon [/mm] > 0, wobei [mm] \varepsilon [/mm] eine beliebig gegebene reelle, positive Zahl ist.
Dann ist [mm] k(x,\varepsilon) [/mm] = {y [mm] \in [/mm] X; d(x,y) < [mm] \varepsilon [/mm] } Epsilon-Kugel von x in X.

D.h. aber, ich habe dann die Epsilonkugel des Abstandes von x und y oder? Bzw. es gibt ein Epsilon, welches größer als der Abstand der beiden Punkte ist.

Wie definiere bzw. konstruiere ich aber nun eine Epsilonkugel um einen einzigen Punkt, also z.B. x?

Ein Beispiel:
Wenn ich jetzt untersuchen möchte, ob ein Punkt x ein innerer Punkt von A ist, wobei A [mm] \subseteq [/mm] X ist, sage ich ja, x [mm] \in [/mm] A [mm] \subseteq [/mm] X, falls ein [mm] \varepsilon [/mm] > 0 existiert, sodass k(x, [mm] \varepsilon) \subseteq [/mm] A. In diesem Beispiel habe ich ja gar keinen zweiten Punkt, auf dem ich ein Abstand zwischen einem anderen Punkt definieren kann.

Danke im Voraus.

Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Epsilon-Kugeln und das Innere: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Sa 30.04.2011
Autor: benevonmattheis

Hallo,
du sagst

>  Dann ist [mm] $k(x,\varepsilon) =\{ y \in X; \,d(x,y) < \varepsilon \}$ [/mm] Epsilon-Kugel von x in X.

Das muss man sich mal auf der Zunge zergehen lassen:
"Die Menge aller Punkte $y$, die in $X$ liegen und deren "Abstand" zu deinem festen Punkt $x$ kleiner ist als [mm] $\varepsilon$." [/mm]
Das bezieht sich nicht auf ein $y$, sondern auf alle Punkte, die näher an $x$ liegen als [mm] $\varepsilon$. [/mm] Das ist jetzt ein bisschen trivial ausgedrückt, in Wirklichkeit ist eine Metrik nicht unbedingt der Abstand, den man aus dem Alltag kennt, sondern eine "Art" Abstand (du kennst sicher verschiedene Metriken). Außerdem würde der Mathematiker nicht "Punkte" sagen, sondern Elemente von $X$. Aber zum Verständnis kann man das mal so sagen.
Bei dem alltäglichen Abstand im [mm] $\IR^2$, [/mm] entspricht die Epsilonkugel übrigens dem Inneren eines Kreises mit Radius [mm] $\varepsilon$ [/mm] um $x$. Eben alle Punkte mit Abstand kleiner [mm] $\varepsilon$ [/mm] zu $x$.
Im [mm] $\IR^3$ [/mm] ist es dann mit dem alltäglichen Abstand tatsächlich eine Kugel um $x$.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]