matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieErste Fundamentalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Erste Fundamentalform
Erste Fundamentalform < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Fundamentalform: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:22 Di 24.01.2012
Autor: chesn

Aufgabe
Ist h eine parametrisierte Fläche und bezeichnet [mm] T_{(u,v)}h [/mm] die Tangentialebene von h im Punkt h(u,v), so nennt man die Bilinearform

$ I(x,y):=<x,y>, \ \ \  [mm] (x,y\in T_{(u,v)}h) [/mm] $

die erste Fundamentalform von h. Berechnen Sie für a,b,c [mm] \in \IR [/mm] die Darstellungsmatrix der ersten Fundamentalform bezüglich der basis [mm] \{\partial_{u}h,\partial_vh\} [/mm] der folgenden parametrisierten Flächen in den Punkten, in denen sie regulär sind:

(a) h(u,v)=(a*sin(u)*cos(v), b*sin(u)*sin(v), c*cos(u))

Hallo! Sind eig. mehrere Aufgabenteile, aber denk mal wenn ich die (a) löse, dann ist der Rest auch kein Problem mehr.
Hab mich zunächst mal bei []Wiki informiert. (Im Skript steht nichts weiter.. ) Demnach hab ich erstmal die Koeffizienten der ersten Fundamentalform berechnet: ($*$ bezeichnet das Skalarprodukt)

$ [mm] E(u,v)=\partial_uh*\partial_uh, [/mm] \ \ \ \ [mm] F(u,v)=\partial_uh*\partial_vh, [/mm] \ \ \ \ [mm] G(u,v)=\partial_vh*\partial_vh [/mm] $

Die Darstellungsmatrix ist dann [mm] M=\pmat{E & F \\ F & G} [/mm]

Bis hierhin kein Problem. Was mich jetzt verwirrt sind die Formulierungen in der Aufgabe: "in den Punkten, in denen diese regulär sind" und "bezüglich der Basis...".

Bin ich schon fertig wenn ich die Matrix aufgestellt habe oder muss ich sonst noch irgendetwas beachten?

Als Ergebnis von (a) hätte ich dann die Darstellungsmatrix:

[mm] M=\pmat{a^2cos^2(u)cos^2(v)+b^2cos^2(u)sin^2(v)+c^2sin^2(u) & -a^2cos(u)cos(v)sin(u)sin(v)+b^2sin(u)cos(u)sin(v)cos(v) \\ -a^2cos(u)cos(v)sin(u)sin(v)+b^2sin(u)cos(u)sin(v)cos(v) & a^2sin^2(u)sin^2(v)+b^2sin^2(u)cos^2(v)} [/mm]

Was mir von der Größe der Matrix etwas seltsam vorkommt..

Danke fürs Drüberschauen!

Lieben Gruß
chesn

        
Bezug
Erste Fundamentalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 24.01.2012
Autor: chesn

Sorry, bei "Darstellungsmatrix bzgl. Basis" hats jetzt erst klick gemacht, also ist das soweit erledigt..

aber wie wirkt sich das "in den punkten in denen sie regulär sind" aus?

Gruß
chesn

Bezug
        
Bezug
Erste Fundamentalform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Do 26.01.2012
Autor: MatthiasKr

Hallo,

> Ist h eine parametrisierte Fläche und bezeichnet
> [mm]T_{(u,v)}h[/mm] die Tangentialebene von h im Punkt h(u,v), so
> nennt man die Bilinearform
>
> [mm]I(x,y):=, \ \ \ (x,y\in T_{(u,v)}h)[/mm]
>  
> die erste Fundamentalform von h. Berechnen Sie für a,b,c
> [mm]\in \IR[/mm] die Darstellungsmatrix der ersten Fundamentalform
> bezüglich der basis [mm]\{\partial_{u}h,\partial_vh\}[/mm] der
> folgenden parametrisierten Flächen in den Punkten, in
> denen sie regulär sind:
>  
> (a) h(u,v)=(a*sin(u)*cos(v), b*sin(u)*sin(v), c*cos(u))
>  Hallo! Sind eig. mehrere Aufgabenteile, aber denk mal wenn
> ich die (a) löse, dann ist der Rest auch kein Problem
> mehr.
> Hab mich zunächst mal bei
> []Wiki
> informiert. (Im Skript steht nichts weiter.. ) Demnach hab
> ich erstmal die Koeffizienten der ersten Fundamentalform
> berechnet: ([mm]*[/mm] bezeichnet das Skalarprodukt)
>  
> [mm]E(u,v)=\partial_uh*\partial_uh, \ \ \ \ F(u,v)=\partial_uh*\partial_vh, \ \ \ \ G(u,v)=\partial_vh*\partial_vh[/mm]
>  
> Die Darstellungsmatrix ist dann [mm]M=\pmat{E & F \\ F & G}[/mm]
>  
> Bis hierhin kein Problem. Was mich jetzt verwirrt sind die
> Formulierungen in der Aufgabe: "in den Punkten, in denen
> diese regulär sind" und "bezüglich der Basis...".
>  

ich vermute regularität in einem punkt der fläche bedeutet, dass das Differenzial (die Jakobi-Matrix) der Parametrisierung in diesem punkt vollen Rang hat, also injektiv ist. das wäre analog zur definition von regulären flächen.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]