matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikErwartungswert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "mathematische Statistik" - Erwartungswert
Erwartungswert < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Erw.wert Poisson-Verteilung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:53 So 23.11.2014
Autor: Timos21

Aufgabe
Bestimme den Erwartungswert der Poisson-Verteilung auf formale Weise


Hi,
die Poissonverteilung ist: [mm] P\left( x \right) [/mm] = [mm] \frac{{e^{ - \lambda } \lambda ^x }}{{x!}} [/mm]
Nun soll der Erwartungswert bestimmt werden: [mm] \mu=\integral_{0}^{\infty}P\left( x \right) [/mm] x = [mm] \integral_{0}^{\infty} \frac{{e^{ - \lambda } \lambda ^x }}{{x!}} x=\integral_{0}^{\infty} \frac{{e^{ - \lambda } \lambda ^x }}{{(x-1)!}}=\integral_{0}^{\infty} \frac{{e^{ - \lambda } \lambda ^x }}{{\Gamma \left( x \right) }} [/mm] dx

Weiter komme ich leider nicht.. eine partielle Integration müsste, denke ich, nun durchgeführt werden, aber wie genau wird hier die Gamma-Funktion integriert/abgeleitet? Geht das Ganze nicht irgendwie einfacher?
Danke!

        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 So 23.11.2014
Autor: DieAcht

Hallo,


Die Poisson-Verteilung ist eine diskrete Wahrscheinlichkeitsverteilung,
so dass für die diskrete reelle Zufallsvariable [mm] $X\sim P_{\lambda}$ [/mm] mit [mm] \lambda>0 [/mm] gilt:

      [mm] \mu=\sum_{k=0}^{\infty}k*\frac{\lambda^{k}}{k!}e^{-\lambda}=\lambda*e^{-\lambda}\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}=\lambda*e^{-\lambda}\sum_{l=0}^{\infty}\frac{\lambda^{l}}{l!}=\lambda. [/mm]


Nach dem Essen gucke ich mir das mit der Gammafunktion an.


Gruß
DieAcht

Bezug
                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 So 23.11.2014
Autor: Timos21

Danke.. habe völlig übersehen, dass es sich hier um eine diskrete ZV und keine stetige ZV handelt.. hat sich somit erledigt.
Vielen Dank!

Bezug
                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 So 23.11.2014
Autor: DieAcht

Okay, aber es hält dich nichts davon ab den Erwartungswert mit
der Definition durchzurechnen. Hier ist es allerdings ziemlich
einfach, denn [mm] $X\$ [/mm] ist diskret und somit ein "Spezialfall", den
wir ganz einfach, siehe andere Mitteilung, behandeln können.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]