matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisErwartungswert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Analysis" - Erwartungswert
Erwartungswert < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:19 Di 03.11.2009
Autor: piccolo1986

Aufgabe
gegeben ist die funktion [mm] f(y)=E(X-y)^{2} [/mm] für [mm] y\in\IR [/mm] Dabei sei X eine reellwertige zufallsvariable. gesucht ist für welchen wert y ihr minimum annimmt und wie der funktionswert dazu aussieht.

hey, also ich steig bei diesem thema erwartunsgswert und zufallsvariable noch nicht so ganz durch. Aber ich denke mal, dass die funktion erst umgeschrieben werden muss und dann das minimum über differenzieren berechnet werden kann. hat jemand ne idee, wie ich die funktion umformen kann???

mfg piccolo

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Mi 04.11.2009
Autor: luis52

Moin,

betrachte $ [mm] f(y)=E(X-y)^{2}=E((X-E(X))+(E(X)-y))^{2} [/mm] $

vg Luis

PS: Ist deine Taste Hochstelltaste kaputt?

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 04.11.2009
Autor: piccolo1986

Hab die Aufgabe jetzt nochmal durchgerechnet und komme darauf, dass die Funtkion ihr Minimum bei y=E(X) hat und der entsprechende Funktionswert ist dann varX. Hoffe mal das ist so richtig

mfg piccolo

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mi 04.11.2009
Autor: luis52


> Hab die Aufgabe jetzt nochmal durchgerechnet und komme
> darauf, dass die Funtkion ihr Minimum bei y=E(X) hat und
> der entsprechende Funktionswert ist dann varX. Hoffe mal
> das ist so richtig


[ok]

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]