matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungErwartungswert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Erwartungswert
Erwartungswert < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 06.03.2012
Autor: Statham

Aufgabe
Aus einer Urne mit 2 weißen und 8 roten Kugeln werden nacheinander ohne Zurücklegen so lange einzelne Kugeln entnommen, bis die erste rote Kugel auftritt.
Wie oft muss man durchschnittlich ziehen?

Hallo, ich habe mal eine Frage:

Die Lösung ist ja:

[mm] \summe_{x}_{i}*P(x-{i})=1*\bruch{8}{10}+2*(\bruch{2}{10}*\bruch{8}{9})+3*(\bruch{2}{10}*\bruch{1}{9}*1=\bruch{110}{90}=1,222.. [/mm]

Das ist ja:
rote K.
weiße, rote K.
weiße, weiße, rote Kugel

Aber warum fängt man mit der roten Kugel an? Das ist das was ich nicht verstehe. Kann man das nicht auch in einer anderen Reihenfolge rechnen?

Vielen Dank, Gruß Statham

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Di 06.03.2012
Autor: barsch

Hallo Jason,


> Aus einer Urne mit 2 weißen und 8 roten Kugeln werden
> nacheinander ohne Zurücklegen so lange einzelne Kugeln
> entnommen, bis die erste rote Kugel auftritt.
> Wie oft muss man durchschnittlich ziehen?
>  Hallo, ich habe mal eine Frage:
>  

>  
> Das ist ja:
>  rote K.
>  weiße, rote K.
>  weiße, weiße, rote Kugel
>  
> Aber warum fängt man mit der roten Kugel an? Das ist das
> was ich nicht verstehe. Kann man das nicht auch in einer
> anderen Reihenfolge rechnen?

Der Rechnung geht doch folgende Überlegung voraus: Du ziehst solange bis du eine rote Kugel gezogen hast.

Die Wkt. im ersten Zug eine rote Kugel zu ziehen ist [mm]\bruch{8}{10}[/mm].

Um nur einmal ziehen zu müssen, musst du eine rote Kugel ziehen. Dann bist du bereits fertig. Du kannst hier noch keine weiße Kugel betrachten, weil du dann nämlich mindestens ein weiteres Mal ziehen müsstest, da das Spiel erst endet, wenn du eine rote Kugel gezogen hast.

Ziehst du beim ersten Mal eine weiße Kugel, musst du ein zweites Mal ziehen. Die Wkt. dafür, dass du ein zweites Mal ziehen musst und dann eine rote Kugel ziehst ist: [mm]\bruch{2}{10}*\bruch{8}{9}[/mm]

Jetzt kann es sein, dass du in den ersten beiden Ziehungen die 2 weißen Kugeln gezogen hast.Dann musst du ein drittes Mal ziehen, ziehst dann aber zwangsläufig eine rote Kugel, weil sich nur noch rote Kugeln in der Urne befinden. Die Wkt. dafür, dass du in den ersten beiden Zügen jeweils eine weiße Kugel und im dritten Zug endlich eine rote Kugel ziehst, ist: [mm]\bruch{2}{10}*\bruch{1}{9}*1[/mm]

Und dann den EW berechnen:

Mit der Wkt. [mm]\bruch{8}{10}[/mm] musst du nur 1 mal ziehen.
Mit der Wkt. [mm]\bruch{1}{10}*\bruch{8}{9}[/mm] musst du 2 mal ziehen.
Mit der Wkt. [mm]\bruch{2}{10}*\bruch{1}{9}*1[/mm] musst du 3 mal ziehen.

Und somit

> Die Lösung ist ja:

>

> [mm]\summe_{x}_{i}*P(x-{i})=1*\bruch{8}{10}+2*(\bruch{2}{10}*\bruch{8}{9})+3*(\bruch{2}{10}*\bruch{1}{9}*1=\bruch{110}{90}=1,222..[/mm]

Ich hoffe, ich konnte helfen.

>  
> Vielen Dank, Gruß Statham


Gruß
barsch


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]