matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswert - Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Erwartungswert - Beweis
Erwartungswert - Beweis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert - Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 20:12 Fr 28.04.2006
Autor: Ursus

Aufgabe
X sei eine diskrete Zufallsvariable mit Werten in [mm] N_{0}. [/mm]
Zeigen Sie: E(X)= [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

Hallo Mathegenies!

Die Aufgabenstellung ist mir klar und ich hab auch schon eine Idee.
Der Erwartungswert wird ja so berechnet:
E(X)= [mm] \summe_{k=1}^{ \infty} [/mm] k*P(X=k)

Wenn man die Glieder der Reihen einzeln aufschreibt, ist sofort klar, dass dies gilt:
[mm] \summe_{k=1}^{ \infty} [/mm] k*P(X=k) = [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

Ich möchte aber dafür einen Beweis.

Mein Vorschlag: Beweis durch Induktion:

Ich zeige, dass die #P(X=n)=n in der Reihe [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

IA: n=1    trivialerweise erfüllt.

IS: n  [mm] \to [/mm] n+1:

Wissen also: #P(X=n)=n in der Reihe [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k) für alle 0 [mm] \le [/mm] k [mm] \le [/mm] n

[mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k) = [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k) + [mm] \summe_{k\ge n+1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

   die # P(X=n)=n in [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k)
[mm] \Rightarrow [/mm] # P(X=n+1)=n   in [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k)

und die # P(X=n+1)=1   in [mm] \summe_{k\ge n+1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

insgesamt [mm] \Rightarrow [/mm] # P(X=n+1)=n+1                                 [mm] \Box [/mm]

Das wär mein Beweis.
Passt das so?  
Vielleicht hat jemand eine bessere Idee.
Besten Dank für eure Hilfe!
mfg URSUS

        
Bezug
Erwartungswert - Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 29.04.2006
Autor: DirkG

Im Grunde genommen ist es richtig, aber an der entscheidenden Stelle

> die # P(X=n)=n in [mm]\summe_{k\ge1}^{ n}[/mm] P(X [mm]\ge[/mm] k)
>   [mm]\Rightarrow[/mm] # P(X=n+1)=n   in [mm]\summe_{k\ge1}^{ n}[/mm] P(X [mm]\ge[/mm]  k)

ist es für meinen Geschmack etwas dünn kommentiert. Ich würde es einfach über eine Doppelsumme, und dann Vertauschung der Summationsindizes machen:
[mm] $$\sum\limits_{k=1}^{\infty} [/mm] ~ [mm] P(X\geq [/mm] k) = [mm] \sum\limits_{k=1}^{\infty} \sum\limits_{n=k}^{\infty} [/mm] ~  P(X=n) = [mm] \sum\limits_{1\leq k\leq n<\infty} [/mm] ~  P(X=n) = [mm] \sum\limits_{n=1}^{\infty} \sum\limits_{k=1}^n [/mm] ~  P(X=n) = [mm] \sum\limits_{n=1}^{\infty} [/mm] ~  nP(X=n)$$
Falls jemand die Stirn runzelt ("darf man so einfach in einer Doppelreihe die Summation vertauschen?"): Alle Reihenglieder sind nichtnegativ, also gibt es nur die beiden Fälle absolute Konvergenz oder bestimmte Divergenz gegen [mm] $+\infty$. [/mm] In beiden Fällen ist die Vertauschung zulässig.


Bezug
                
Bezug
Erwartungswert - Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Sa 29.04.2006
Autor: Ursus

Vielen Dank!
So gefällt es mir auch besser.
Mfg URSUS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]