matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieErwartungswert abschätzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert abschätzen
Erwartungswert abschätzen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert abschätzen: Tipp für Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:12 Mi 24.05.2017
Autor: Stala

Aufgabe
Seien die Zufallsvariablen X,Y gleichverteilt auf (0,1). Man beweise die Abschätzung:
[mm] E(\lvert [/mm] X-Y [mm] \rvert) \leq \frac{1}{2} [/mm]

Hallo,

bei dieser Abschätzung komme ich nicht so recht weiter. Ich hatte erst gedacht, ich kenne die gemeinsame Dichtefunktion [mm] \( f_{X,Y} [/mm] = [mm] \chi_A \) [/mm] mit [mm] \( [/mm] A = [mm] \{ x,y \in \mathbb{R}^2 | \, 0 < x,y < 1 \} \) [/mm] und kann den Erwartungswert damit berechnen:

[mm] E(\lvert [/mm] X-Y [mm] \rvert) [/mm] = [mm] \int_{\mathbb{R}^2} \chi_A \lvert [/mm] x-y [mm] \rvert \, [/mm] d(x,y) [mm] \\ [/mm]
= [mm] \int_A \lvert [/mm] x-y [mm] \rvert \, [/mm] d(x,y) [mm] \\ [/mm]
= [mm] \int_0^1 \int_0^x [/mm] x -y [mm] \, [/mm] dy dx + [mm] \int_0^1 \int_x^1 [/mm] y - x [mm] \, [/mm] dy dx + [mm] \iint_A [/mm] 0 [mm] \, [/mm] dx dy [mm] \\ [/mm]
= [mm] \frac{1}{6} [/mm] + [mm] \frac{1}{6} [/mm] + 0 = [mm] \frac{1}{3} [/mm]

aber die beiden ZV sind ja nicht unabhängig gegeben.

Mir fällt als Abschätzung nur die Dreiecksungleichung ein
[mm] E(\lvert [/mm] X-Y [mm] \rvert) \leq [/mm] E(X) + E(Y)
aber die ist zu schwach um das gewünschte zu zeigen.

Hat jemand ne Idee für mich?
Und wäre die Berechnung für den Erwartungswert richtig, im Falle der stochastischen Unabhängigketi?



        
Bezug
Erwartungswert abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 24.05.2017
Autor: tobit09

Hallo Stala!


> bei dieser Abschätzung komme ich nicht so recht weiter.
> Ich hatte erst gedacht, ich kenne die gemeinsame
> Dichtefunktion [mm]\( f_{X,Y}[/mm] = [mm]\chi_A \)[/mm] mit [mm]\([/mm] A = [mm]\{ x,y \in \mathbb{R}^2 | \, 0 < x,y < 1 \} \)[/mm]
> und kann den Erwartungswert damit berechnen:
>  
> [mm]E(\lvert[/mm] X-Y [mm]\rvert)[/mm] = [mm]\int_{\mathbb{R}^2} \chi_A \lvert[/mm]
> x-y [mm]\rvert \,[/mm] d(x,y) [mm]\\[/mm]
>  = [mm]\int_A \lvert[/mm] x-y [mm]\rvert \,[/mm] d(x,y) [mm]\\[/mm]
>  = [mm]\int_0^1 \int_0^x[/mm] x -y [mm]\,[/mm] dy dx + [mm]\int_0^1 \int_x^1[/mm] y -
> x [mm]\,[/mm] dy dx + [mm]\iint_A[/mm] 0 [mm]\,[/mm] dx dy [mm]\\[/mm]
>  = [mm]\frac{1}{6}[/mm] + [mm]\frac{1}{6}[/mm] + 0 = [mm]\frac{1}{3}[/mm]
>
> aber die beiden ZV sind ja nicht unabhängig gegeben.

Korrekt im Falle der stochastischen Unabhängigkeit von X und Y. [ok]
(Ich finde deine Überlegungen recht grobschrittig notiert, aber das ist natürlich Geschmackssache.)


> Hat jemand ne Idee für mich?

Hier hilft ein Trick:
Es gilt [mm] $|X-Y|=|(X-\frac12)+(\frac12-Y)|$. [/mm]
Wende nun die Dreiecksungleichung an.


Viele Grüße
Tobias

Bezug
                
Bezug
Erwartungswert abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Mi 24.05.2017
Autor: Stala

Hallo Tobias,

vielen Dank, darauf wäre ich ja nie gekommen. Mit etwas weiterer Mühe komme ich dann tatsächlich auf die Abschätzung :)

VG



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 08m 9. Roadrunner
UKomplx/komplexe Wurzelfunktion
Status vor 14h 29m 6. questionpeter
UWTheo/Markov-Kette
Status vor 15h 34m 7. sancho1980
IntTheo/Uneigentliches Integral
Status vor 21h 20m 2. steppenhahn
UAnaSon/Delta Funktion vs Intergral
Status vor 1d 0h 04m 1. djanselo
UAnaR1/primitiv rekursive Funktion
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]