matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieErwartungswert berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert berechnen
Erwartungswert berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert berechnen: idee
Status: (Frage) beantwortet Status 
Datum: 13:18 Fr 13.11.2009
Autor: james_kochkessel

Aufgabe
Berechnen Sie die Erwartungswerte der folgenden Zufallsvariablen X:
a) X nimmt mit der Wahrscheinlichkeit 0.5 den Wert 1 an und in der anderen Hälfte der Fälle gleichverteilt einen Wert zwischen 1 und 3.

hallo,

und zwar frag ich mich hier, was da eigentlich gemacht werden soll.

ich hab die definition des erwartungswerts gegeben durch [mm] E(X)=\summe_{i=1}^{} x_{i}* f(x_{i}) [/mm]

zum ersten teil der aufgabe kann ich ja nun einfach die formel anwenden und erhalte dementsprechend 0,5*1
jetzt kommt in der lösung jedoch ein schritt, den ich nicht verstehe, und zwar wird nun weitergemacht, indem gesagt wird :
1*0,5 + [mm] \integral_{1}^{3}{x*\bruch{1}{4} dx} [/mm]

hier bin ich nun absolut ratlos, wieso auf einmal integral, hat das was mit diskret bzw stetiger Zufallsvariable zu tun oder wie darf ich das verstehen ?!

unter dem integral ist auch noch ergänzt, dass "Gleichverteilung" auf [1,3] in der Hälfte der Fälle [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{2}*\bruch{1}{2} [/mm]

das weitere ausrechnen ist dann kein problem, nur darauf zu kommen ist das große problem

lg kochkessel

        
Bezug
Erwartungswert berechnen: stetige Gleichverteilung
Status: (Antwort) fertig Status 
Datum: 14:18 Fr 13.11.2009
Autor: karma

Hallo und guten Tag

"...und in der anderen Hälfte der Fälle gleichverteilt einen Wert zwischen 1 und 3."

In dieser anderen Hälfte handelt es sich um eine sogenannte stetige Gleichverteilung,
d.h.  a l l e   Werte zwischen 1 und 3 sind möglich und kein Wert fällt mehr ins Gewicht als irgendein anderer.

Der Erwartungswert einer stetigen Zufallsvariablen
berechnet sich als Integral des Produkts des Wertes der Variablen und der Wahrscheinlichkeitsdichte.

Hier (in der "anderen Hälfte") ist die Dichte
konstant gleich [mm] $\frac{1}{4}$ [/mm] auf dem Intervall von 1 bis 3 und
Null sonst.

So kommt $ [mm] \integral_{1}^{3}{x\cdot{}\bruch{1}{4} dx} [/mm] $ zustande,
zur Erinnering:
[mm] $\bruch{1}{4}$ [/mm] ist die (konstante) Dichte,
$x$ ist der Wert, den die Zufallsvariable im Intervall von 1 bis 3 annimmt.

Einverstanden?

Schönen Gruß
Karsten





Bezug
                
Bezug
Erwartungswert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Fr 13.11.2009
Autor: james_kochkessel

achso, vielen dank erstma

d.h. also ich muss bei der verteilung darauf achten, dass die 0 auf vorkommen kann und daher 1/4 ?

weil mein problem war darauf zu kommen, dass die dichte hier 1/4 ist, ich hätte spontan gesagt 1/3, da es ja 3 möglichkeiten gibt ?!

Bezug
                        
Bezug
Erwartungswert berechnen: Alle Werte von 1-3 sind mögl.
Status: (Antwort) fertig Status 
Datum: 14:34 Fr 13.11.2009
Autor: karma

Hallo und guten Tag,

a l l e  Werte zwischen eins und drei sind  m ö g l i c h,
der Wert 1 wird mit einer Wahrscheinlichkeit [mm] $\frac{1}{2}$ [/mm] angenommen,
ein Wert größer 1 und höchstens 3 auch mit der Wahrscheinlichkeit  [mm] $\frac{1}{2}$, [/mm]
insgesamt:
ein Wert midestens 1 und höchstens 3 mit Wahrscheinlichkeit 1.

Schönen Gruß
Karsten

PS: mit ein Wert größer 1 und höchstens 3 meine ich nicht jeder Wert größer 1 und höchstens 3, sondern (bloß) ein Wert größer 1 und höchstens drei


Bezug
        
Bezug
Erwartungswert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Fr 13.11.2009
Autor: Al-Chwarizmi

Hallo James,

das geht eigentlich auch als Kopfrechnung:
In der Hälfte aller Fälle ist X=1, in der anderen
Hälfte ein beliebiger Wert aus [1;3], der einer
Gleichverteilung entstammt. Für diesen zweiten
Fall ist natürlich der Erwartungswert in der Mitte
des Intervalls, also bei 2. Insgesamt ergibt sich

      $E(X)\ =\ [mm] \frac{1}{2}*1+\frac{1}{2}*2\ [/mm] =\ 1.5$


Gruß     Al

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]