Erwartungswert berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:17 Di 24.11.2009 | Autor: | jansimak |
F(x) [mm] =\begin{cases} \bruch{1}{4} e^{2x}, & \mbox{für } x\le \mbox{0} \\ (1-\bruch{1}{2} e^{-x})^2, & \mbox{für } x> \mbox{0} \end{cases}
[/mm]
Hierfür sollen Median, sowie das untere Quartil bestimmt werden. Ich frage mich nun, wie ich den Median bzw. das untere Quartil für eine Funktion bestimme, die ja im Prinzip aus "zwei Teilen" besteht?
|
|
|
|
> F(x) [mm]=\begin{cases} \bruch{1}{4} e^{2x}, & \mbox{für } x\le \mbox{0} \\ (1-\bruch{1}{2} e^{-x})^2, & \mbox{für } x> \mbox{0} \end{cases}[/mm]
>
> Hierfür sollen Median, sowie das untere Quartil bestimmt
> werden. Ich frage mich nun, wie ich den Median bzw. das
> untere Quartil für eine Funktion bestimme, die ja im
> Prinzip aus "zwei Teilen" besteht?
Hallo jansimak,
bei F handelt es sich offenbar um eine (kumulierte) Ver-
teilungsfunktion. Dies erkennt man an ihren Grenzwerten
für [mm] x\to-\infty [/mm] und [mm] x\to\infty [/mm] sowie an ihrer Monotonie.
Ferner ist F stetig. Median und unteres Quartil sind dann
einfach die x-Werte mit [mm] F(x)=\frac{1}{2} [/mm] bzw. [mm] F(x)=\frac{1}{4}. [/mm]
LG
Al-Chw.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:27 Di 24.11.2009 | Autor: | jansimak |
Also bestimme ich für den Fall [mm] x\ge0 [/mm] und für den Fall x<0 jeweils Median und unteres Quartil?
Ich habe jetzt daran gedacht zu gucken, was passiert wenn ich für den [mm] x\le [/mm] 0-Fall 0 einsetze, damit ich abschätzen kann, wieviel kumulierte WS links von dem Punkt liegt. Das ist dann [mm] \bruch{1}{4} [/mm] * 1, also 1/4, sprich unteres Quartil. Daher weiß ich, dass der Median im anderen Teil liegen muss.
|
|
|
|
|
> Also bestimme ich für den Fall [mm]x\ge0[/mm] und für den Fall x<0
> jeweils Median und unteres Quartil?
>
> Ich habe jetzt daran gedacht zu gucken, was passiert wenn
> ich für den [mm]x\le[/mm] 0-Fall 0 einsetze, damit ich abschätzen
> kann, wieviel kumulierte WS links von dem Punkt liegt. Das
> ist dann [mm]\bruch{1}{4}[/mm] * 1, also 1/4, sprich unteres
> Quartil. Daher weiß ich, dass der Median im anderen Teil
> liegen muss.
Hallo jansimak,
es ist einfacher als du denkst. F ist eine Funktion;
nur ihre Definition ist aufgesplittet. Hast du dir den Graph
skizziert (das hilft dem Verständnis!).
Es ist [mm] F(0)=\frac{1}{4} [/mm] (übrigens nach beiden Formeln,
also ist F an der Stelle x=0 stetig), also ist hier auch
gerade das untere Quartil. Der Median liegt sicher rechts
davon, nämlich da, wo [mm] F(x)=\frac{1}{2} [/mm] ist. Dies führt auf eine
Gleichung zur Bestimmung von x.
Ach ja, noch etwas: In der Überschrift hast du noch vom
Erwartungswert geschrieben. Soll der auch noch berechnet
werden ? (der hat nämlich mit Median und Quartilen nicht
direkt zu tun)
LG
|
|
|
|