Erwartungswert geom Vert. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo! Ich habe versucht, den Erwartungswert der geometrischen Verteilung zu berechnen...
EX= [mm] \integral_{0}^{\infty}{x*\lambda e^{-\lambda x} dx}
[/mm]
Dann habe ich [mm] -\lambda [/mm] x = t substituiert und partielle Integration gemacht...
[mm] =\bruch{1}{\lambda} [/mm] ( [mm] [te^{t}](von [/mm] 0 bis [mm] \infty) [/mm] - [mm] \integral_{0}^{\infty}{e^{t} dt}) [/mm] = [mm] \bruch{1}{\lambda} [/mm] ( [mm] [te^{t}-e^{t}](von [/mm] 0 bis [mm] \infty)) [/mm] und dann halt rücksubstituiert.
In meiner Lösung steht dann
[mm] =-\bruch{1}{\lambda} [/mm] (0-1) = [mm] \bruch{1}{\lambda}
[/mm]
Kann mir vielleicht jemand erklären, wie ich auf den vorletzten Schritt komme? Wäre super! Danke schonmal!
Lg, Raingirl87
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:16 Do 03.04.2008 | Autor: | koepper |
Hallo,
geht es dir jetzt um die Exponentialverteilung oder um die geometrische?
$E(X) [mm] =\int_0^\infty x*\lambda e^{-\lambda x} [/mm] dx = [mm] \left[\left(-x - \frac{1}{\lambda}\right) e^{-\lambda x}\right]_0^\infty [/mm] = 0 - [mm] \left(-\frac{1}{\lambda}\right) [/mm] = [mm] \frac{1}{\lambda}.$
[/mm]
Gruß
Will
|
|
|
|
|
Hallo!
Ja, ich habe natürlich die Exponentialverteilung gemeint und nicht die geometrische. Sorry. Da war ich scheinbar in Gedanken schon bei meiner nächsten Aufgabe.
Ich verstehe aber immernoch nicht so recht, wie ich auf das Ergebnis komme. :(
Wenn ich Rücksubstituiere und dann die Grenzen einsetze habe ich:
[mm] \bruch{1}{\lambda}*[-\lambda \infty e^{-\lambda \infty}-e^{-\lambda \infty}-(0-1)]. [/mm] Und dann? Ich komme irgendwie mit den [mm] \infty´s [/mm] nicht klar. Wie rechnet man denn damit?
Lg, Raingirl87
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:07 So 06.04.2008 | Autor: | koepper |
Hallo,
> [mm]\bruch{1}{\lambda}*[-\lambda \infty e^{-\lambda \infty}-e^{-\lambda \infty}-(0-1)].[/mm]
> Und dann? Ich komme irgendwie mit den [mm]\infty´s[/mm] nicht klar.
> Wie rechnet man denn damit?
eigentlich gar nicht. Streng genommen mußt du sie durch Variablen ersetzen und dann den Grenzwert für diese Variablen gegen [mm] $\infty$ [/mm] bilden.
Es ist dabei [mm] $\lim\limits_{x \to \infty} x^n [/mm] * [mm] e^{-\lambda x} [/mm] = 0$ für jedes $n [mm] \in \IN$ [/mm] und [mm] $\lambda [/mm] >0$. Das macht man sich anschaulich entweder durch Ausprobieren klar, oder mathematisch durch den Satz von L'Hospital. Der wird aber in den letzten Jahren im Schulunterricht kaum noch besprochen.
LG
Will
|
|
|
|