Erwartungswert und Varianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:06 So 24.05.2009 | Autor: | ToniKa |
Aufgabe | Es sei X eine ZV mit Erwartungswert E(X) und Varianz V (X). Zeigen Sie E(cX+a) =
cE(X) + a und V (cX + a) = c2V (X).
Unterscheiden Sie jeweils die Fälle, dass X (a) eine diskrete ZV, (b) eine kontinuierliche ZV ist. |
Hallo,
das ist meine Lösung zu (a): E(cX+a)= [mm] \integral_{-\infty}^{\infty}{(cX+a)*f(x)dx}=c \integral_{-\infty}^{\infty}{a+x*f(x)dx}= c\integral_{-\infty}^{\infty}{a+E(X)}=cE(x) [/mm] +a (ich weiss aber nicht, ob ich die Variable a so stehen lassen kann)
Und für Varianz habe ich:
V(cX+a)= [mm] \integral_{-\infty}^{\infty}{(cX+a)^2 f(x)-(E(cX+a))^2}= c^2 \integral_{-\infty}^{\infty}{x^2f(x) +a^2-(c(E(X+a))^2}=c^2 \integral_{-\infty}^{\infty}{x^2f(x)+a^2-((c^2E(x)^2)+a^2)}=c^2V(x)
[/mm]
Ich weiss nicht, wie ich das für diskrete Zufallsvariable machen könnte, also für (b).
Ich wäre für jede Korrektur und Tipp für (b) sehr dankbar.
Ich bedanke mich im Voraus.
|
|
|
|
Hallo ToniKa,
zunächst mal zum Erwartungswert bei den kontinierlichen Verteilungen:
[mm]E(cX+a) = \integral_{-\infty}^{\infty}{(cx+a)*f(x) dx}=c*\integral_{-\infty}^{\infty}{x*f(x) dx}+a*\integral_{-\infty}^{\infty}{f(x) dx}[/mm]
So lauten die korrekten Umformungsschritte. Das erste Integral ist jetzt gerade E(X), und das zweite Integral muss per Definition genau 1 ergeben. Deswegen steht da letztlich die Behauptung.
Die Lösung für die Varianz findest du sogar bei Wikipedia. Das ist unabhängig von diskret/kontinuierlich, da du hier den Zusammenhang zwischen Varianz und Erwartungswert benutzt.
Im diskreten Fall ist allgemein [mm]E(X)=\summe_{i=1}^{n}(P(X=i)*i)[/mm].
Die Rechnung sieht dann fast so aus wie mit dem Integral:
[mm]E(cX+a)=\summe_{i=1}^{n}(P(X=i)*(ci+a))=c*\summe_{i=1}^{n}(P(X=i)*i) + a*\summe_{i=1}^{n}P(X=i)[/mm].
Die erste Summe ist gerade E(X), die zweite ergibt gerade 1 und damit ergibt sich die Behauptung.
Gruß,
weightgainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:02 So 24.05.2009 | Autor: | ToniKa |
Hallo weightgainer,
ich möchte mich bei Dir für Deine Korrektur bedanken
Gruß
ToniKa
|
|
|
|