matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikErwartungswertberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Erwartungswertberechnung
Erwartungswertberechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswertberechnung: Umformung
Status: (Frage) beantwortet Status 
Datum: 20:28 Sa 03.11.2012
Autor: Flock

Hallo, Forum!

Nach längerem Grübeln konnte ich leider diese zwei Umformungen nicht nachvollziehen:

Seien [mm] e_{t} [/mm] i.id Zufallsvariablen.

1) Umformung:

Es wird in einem Beweis folgendes behauptet:

[mm] E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w)|^{2}) [/mm] = ??? = [mm] E\summe_{t=1}^{n} e_{t}^{2} [/mm]

So direkt sehe ich es nicht ein, wieso jetzt plötzlich Betragsstriche wegfallen, ich würde so vorgehen, wenn ich die Antwort nicht kennen würde:

[mm] E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w)|^{2})= [/mm]
[mm] E(|\summe_{t=1}^{n} \summe_{k=1}^{n} e_{t} e_{k}exp(-i*t*w)exp(-ikw)|) [/mm]
Ab hier wüsste ich es nicht weiter...
ich weiß nur, dass |exp(-ikw)| = 1, das darf ich aber nur anwenden, wenn ich die Beträge in die Summe hereingezogen habe...

2) Umformung:

[mm] E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w_{1})|^{2} |\summe_{s=1}^{n} e_{s} exp(-i*s*w_{2})|^{2}) [/mm] =
[mm] E\summe_{s,t=1}^{n} \summe_{s,t=1}^{n} e_{t} e_{s} e_{u} e_{v} exp(-i*(t-s)*w_{1}) exp(-i*(u-v)*w_{2}) [/mm]

hier verstehe ich wieder nicht, warum die Betragsstriche einfach so verschwinden.

Ich wäre sehr dankbar, wenn jemand mir dieses Betragsstrichgeheimnis lüften würde und die Zwischenschritte bei diesen Umformungen ergänzen würde

Gruss

Flock

        
Bezug
Erwartungswertberechnung: 1. Umformung
Status: (Antwort) fertig Status 
Datum: 21:45 Di 06.11.2012
Autor: kamaleonti

Hi,
>  
> Seien [mm]e_{t}[/mm] i.id Zufallsvariablen.
>  
> 1) Umformung:
>  
> Es wird in einem Beweis folgendes behauptet:
>  
> [mm]E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w)|^{2})[/mm] = ??? =
> [mm]E\summe_{t=1}^{n} e_{t}^{2}[/mm]
>  
> So direkt sehe ich es nicht ein, wieso jetzt plötzlich
> Betragsstriche wegfallen, ich würde so vorgehen, wenn ich
> die Antwort nicht kennen würde:
>  
> [mm]E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w)|^{2})=[/mm]
>  
> [mm]E(|\summe_{t=1}^{n} \summe_{k=1}^{n} e_{t} e_{k}exp(-i*t*w)exp(-ikw)|)[/mm]

Benutze die Formel [mm] |z|^2=z\overline{z}: [/mm]

    [mm] $E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w)|^{2})=E(\sum_t\sum_s e_t e_s \exp(-i* [/mm] t [mm] *w)\exp [/mm] (i* s *w))$
    
    [mm] $=E(\sum_te_t^2)+\sum_{s\neq t}E(e_t e_s \exp(-i* [/mm] (s-t) [mm] *w))=E(\sum_t e_t^2)$ [/mm]

Die letzte Summe entfällt, da [mm] e_s [/mm] und [mm] e_t [/mm] unabhängig sind, das heißt Kovarianz Null haben.

> Ab hier wüsste ich es nicht weiter...
>  ich weiß nur, dass |exp(-ikw)| = 1, das darf ich aber nur
> anwenden, wenn ich die Beträge in die Summe hereingezogen
> habe...
>  

>


LG

Bezug
        
Bezug
Erwartungswertberechnung: 2. Umformung
Status: (Antwort) fertig Status 
Datum: 21:48 Di 06.11.2012
Autor: kamaleonti


>  
> 2) Umformung:
>  
> [mm]E(|\summe_{t=1}^{n} e_{t} exp(-i*t*w_{1})|^{2} |\summe_{s=1}^{n} e_{s} exp(-i*s*w_{2})|^{2})[/mm]
> = [mm]E\summe_{s,t=1}^{n} \summe_{s,t=1}^{n} e_{t} e_{s} e_{u} e_{v} exp(-i*(t-s)*w_{1}) exp(-i*(u-v)*w_{2})[/mm]

Hier kommt ebenfalls die Identität [mm] |z|^2=z\overline{z} [/mm] zum Einsatz. Dann einfach ausmultipliziert.

>  
> hier verstehe ich wieder nicht, warum die Betragsstriche
> einfach so verschwinden.
>  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]