matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieErweiterte Mersenne-Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Erweiterte Mersenne-Folgen
Erweiterte Mersenne-Folgen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erweiterte Mersenne-Folgen: Primzahltest
Status: (Frage) überfällig Status 
Datum: 17:59 Mi 07.01.2015
Autor: searcher62

Aufgabe
Wir betrachten die Folge [mm] (2^n-1)^2-2. [/mm]

Dabei werden die Mersenne-Nummern [mm] (2^n-1) [/mm] quadriert und 2 subtrahiert.
Anbei die ersten 20 Glieder dieser Folge. Davon sind 11 prim.

status n digits number
P         2 1         7 = 7
P         3 2         47 = 47
P         4 3         223 = 223
FF         5 3         959 = 7 · 137
P         6 4         3967 = 3967
P         7 5         16127 = 16127
FF         8 5         65023 = [mm] 7^2 [/mm] · 1327
FF         9 6         261119 = 23 · 11353
P        10 7         1046527 = 1046527
FF        11 7         4190207 = 7 · 71 · 8431
P        12 8         16769023 = 16769023
FF        13 8         67092479 = 3761 · 17839
FF        14 9         268402687 = 7 · 41 · 935201
P        15 10         1073676287<10> = 1073676287<10>
FF        16 10         4294836223<10> = 41 · 104752103
FF        17 11         17179607039<11> = 7 · 239 · 569 · 18047
P        18 11         68718952447<11> = 68718952447<11>
P        19 12         274876858367<12> = 274876858367<12>
FF        20 13         1099509530623<13> = 7 · 23 · 6829251743<10>
P        21 13         4398042316799<13> = 4398042316799<13>

Meine Frage:

Gibt es dazu passende Lucas-Folgen, um für diese Zahlen einen LL-ähnlichen Primzahltest zu erstellen? Im Gegensatz zu den Mersenne-Primzahlen liefern hier auch nicht-prime Exponenten n neue Primzahlen! Ich habe diesbezüglich in der Literatur nichts gefunden.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Erweiterte Mersenne-Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Mi 07.01.2015
Autor: searcher62

Die Zahlenfolge [mm] (2^n-1)^2-2 [/mm] ist für folgende n prim.

2, 3, 4, 6, 7, 10, 12, 15, 18, 19, 21, 25, 27, 55, 129, 132, 159, 171, 175, 315, 324, 358, 393, 435, 786, 1459, 1707, 2923, .....

wobei Index 2923 eine PRP (probably prime = wahrscheinlich prim) liefert!

Also 28 Primzahlen bis zum Index 3000! Soweit habe ich es auf factordb.com überprüft!

O.g. Zahlenfolge scheint dichter mit Primzahlen belegt zu sein, als die Mersenne-Nummern, jedoch müsste dies mit einem Primzahltest auch verifiziert werden.> Wir betrachten die Folge [mm](2^n-1)^2-2.[/mm]

>  
> Dabei werden die Mersenne-Nummern [mm](2^n-1)[/mm] quadriert und 2
> subtrahiert.
>  Anbei die ersten 20 Glieder dieser Folge. Davon sind 11
> prim.
>  
> status n digits number
>  P         2 1         7 = 7
>  P         3 2         47 = 47
>  P         4 3         223 = 223
>  FF         5 3         959 = 7 · 137
>  P         6 4         3967 = 3967
>  P         7 5         16127 = 16127
>  FF         8 5         65023 = [mm]7^2[/mm] · 1327
>  FF         9 6         261119 = 23 · 11353
>  P        10 7         1046527 = 1046527
>  FF        11 7         4190207 = 7 · 71 · 8431
>  P        12 8         16769023 = 16769023
>  FF        13 8         67092479 = 3761 · 17839
>  FF        14 9         268402687 = 7 · 41 · 935201
>  P        15 10         1073676287<10> = 1073676287<10>

>  FF        16 10         4294836223<10> = 41 · 104752103

>  FF        17 11         17179607039<11> = 7 · 239 · 569

> · 18047
>  P        18 11         68718952447<11> = 68718952447<11>

>  P        19 12         274876858367<12> =

> 274876858367<12>
>  FF        20 13         1099509530623<13> = 7 · 23 ·

> 6829251743<10>
>  P        21 13         4398042316799<13> =

> 4398042316799<13>
>  
> Meine Frage:
>  
> Gibt es dazu passende Lucas-Folgen, um für diese Zahlen
> einen LL-ähnlichen Primzahltest zu erstellen? Im Gegensatz
> zu den Mersenne-Primzahlen liefern hier auch nicht-prime
> Exponenten n neue Primzahlen! Ich habe diesbezüglich in
> der Literatur nichts gefunden.
>  
> Vielen Dank!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  


Bezug
                
Bezug
Erweiterte Mersenne-Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:10 Do 08.01.2015
Autor: felixf

Moin!

> Die Zahlenfolge [mm](2^n-1)^2-2[/mm] ist für folgende n prim.
>  
> 2, 3, 4, 6, 7, 10, 12, 15, 18, 19, 21, 25, 27, 55, 129,
> 132, 159, 171, 175, 315, 324, 358, 393, 435, 786, 1459,
> 1707, 2923, .....

Es geht noch weiter: 6462, 14289, 39012, 51637, 100224, 108127, 110953, 175749, 185580, 226749, 248949, 253987

> wobei Index 2923 eine PRP (probably prime = wahrscheinlich
> prim) liefert!
>  
> Also 28 Primzahlen bis zum Index 3000! Soweit habe ich es
> auf factordb.com überprüft!

Wenn du so eine Sequenz von ganzen Zahlen hast, frag doch einfach die []On-Line Encyclopedia of Integer Sequences!

Hier liefert sie []A091515, natürlich inklusive Quellen. Eine davon ist []eine Seite auf mathworld, wo es weiter unten um Primzahlen der Form [mm] $(2^n [/mm] - [mm] 1)^2 [/mm] - 2$ geht. Dort steht u.A.: "A total of 40 primes of this form (arbitrarily dubbed Carol primes by their original investigator in reference to a personal acquaintance) are known." Damit hast du jetzt erstmal einen Namen :-)

LG Felix


Bezug
                        
Bezug
Erweiterte Mersenne-Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Do 08.01.2015
Autor: searcher62

Vielen Dank, Felix!

Wie es scheint, gestaltet sich so ein Primzahltest als äusserst schwierig, sollte es ihn überhaupt geben. Wäre interessant, wie die Zahlen mit den grossen Indizes als prim festgestellt wurden.

Bezug
        
Bezug
Erweiterte Mersenne-Folgen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 10.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]