matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenErzeug.system eines Teilraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Erzeug.system eines Teilraums
Erzeug.system eines Teilraums < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeug.system eines Teilraums: Hilfe, Tipps, Ideen
Status: (Frage) beantwortet Status 
Datum: 14:14 Fr 28.11.2008
Autor: Pharao

Aufgabe
Wir betrachten den Vektorraum der Polynome       [mm] R\le_{3}[x] [/mm]     und darin die Vektoren (Polynome)  

[mm] -4x^3+4, 4x^2, -5x^3-2, [/mm]

-5x(x+1), x+1, [mm] -4x^3+2x^2+5x, [/mm]

-5x+5, [mm] 5(x-1)^3, [/mm] -4x+1

Wählen Sie aus der Liste der Polynome Teilmengen so aus, dass diese ein Erzeugendensystem der folgenden Teilräume des Vektorraums [mm] R\le_{3}[x] [/mm] darstellen:

a) [mm] {p|p\varepsilonR\le_{3}[x], p(0)=0} [/mm]
b) [mm] R_{2}[x] [/mm]
[mm] c){p|p\varepsilonR\le_{3}[x], p'(0)=0} [/mm]
[mm] d){p|p\varepsilonR\le_{3}[x], p''(0)=0} [/mm]

hallo,
ich war einige tage krankheitsbedingt nicht in der uni und weiß für diese aufgabe keinerlei ansatz. vielleicht könnt ihr mir helfen und mir einen lösungsansatz anhand eines beispieles erklären.

vielen dank schonmal und grüße

Pharao

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeug.system eines Teilraums: Tipp:
Status: (Antwort) fertig Status 
Datum: 15:02 Fr 28.11.2008
Autor: Skalar85

hey du hast fast die gleichen Polynome wie ich in meiner Aufgabe:
a) $ [mm] {p|p\varepsilonR\le_{3}[x], p(0)=0} [/mm] $
du musst gucken welche der Polynome aus der Liste am Punkt f(0)= 0 ist
$ [mm] -4x^3+2x^2+5x, [/mm] $ und so weiter...
dann musst du gucken ob die Polynome linearunabghängig sind also müssen
alle koeffizienten 0 sein.
es gibt allerdings nur 3 Polynome die die Bedingung erfüllen, nur weiß ich nicht ob man bei [mm] R\le_{3}[x] [/mm] 4 Polynome braucht um das Erzeugendensystem aufzustellen oder nur 3, leider hat mir diese Frage auch noch niemand beantwortet.

Ich hoffe ich konnte dir etwas weiter helfen


Bezug
                
Bezug
Erzeug.system eines Teilraums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 28.11.2008
Autor: Pharao

in welchm punkt muss f glich 0 sein, verstehe das noch nicht.
mir fehlt da gewissermaßen der ansatz. vielleicht kannst du mir das an einem bsp erklären?

vielen dank schonmal und gruß

Bezug
                        
Bezug
Erzeug.system eines Teilraums: Antwort zur Rückfrage
Status: (Antwort) fertig Status 
Datum: 16:39 Fr 28.11.2008
Autor: Skalar85

f(x)=x+1 zum beispiel und f(0)=0+1 also ist x=0 dieses Polynom kannst du also nicht benutzen, aber solche polynome wenn f(x)= x ist dann ist ja wenn f(0)=0 also kannst du alle polynome benutzen wo keine konstante drin ist.
dann nimmst du 4 polynome
und die müssen zusammen null sein
also a(x)+b(2x)+c(-6x)+d(x)=0 wobei a,b,c,d auch null sein müssen...
du findest aber nich bei alles 4 polynome also musst du auch manchmal im applet ein nein ankreuzen ;)

Bezug
                
Bezug
Erzeug.system eines Teilraums: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:31 Fr 28.11.2008
Autor: pelzig


>  dann musst du gucken ob die Polynome linearunabghängig sind

Für ein Erzeugendensystem müssen die Vektoren nicht linear unabhängig sein.

Gruß, Robert

Bezug
                
Bezug
Erzeug.system eines Teilraums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 So 30.11.2008
Autor: Skalar85

Habe mir nochmal die Hausaufgabe durchgelesen und davor ist ein Beispiel angebracht...Ich weiß jetzt dass man keine Basis für ein Erzeugendensystem bilden muss aber kann und das haben die in der Beispielaufgabe auch so geschrieben, also weiß ich jetzt nicht ob sie dass in den Lösungen auch verlangen

Bezug
        
Bezug
Erzeug.system eines Teilraums: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:51 Fr 28.11.2008
Autor: Skalar85

wie löst man denn sonst die Aufgabe?

Bezug
                
Bezug
Erzeug.system eines Teilraums: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Fr 28.11.2008
Autor: pelzig

a) Die Elemente des Erzeugendensystems müssen ja zumindest in dem Teilraum liegen, d.h. es muss $f(0)=0$ gelten (das hast du ja auch schon richtig erkannt). Von den zu Auswahl stehenden Polynomen bleiben daher lediglich:
i)    [mm] f(x)=4x^2 [/mm]
ii)   [mm] g(x)=-5x(x+1)=-5x^2-5x [/mm]
iii)  [mm] h(x)=-4x^3+2x^2+5x [/mm]

Aber bilden diese auch wirklich ein Erzeugendensystem, d.h. lässt sich jedes Polynom mit $p(0)=0$ schreiben als [mm] $\lambda_1f+\lambda_2g+\lambda_3h$ [/mm] für gewisse [mm] $\lambda_i\in\IR$? [/mm] Hier gibt es viele Möglichkeiten...

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]