matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenErzeugendensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Erzeugendensystem
Erzeugendensystem < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:40 Mi 16.11.2011
Autor: derahnungslose

Aufgabe
Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2), v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm] \in\IR^4. [/mm] Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind und begründen Sie Ihre Antwort.
...e) Die Vektoren v1,v2,v4 bilden ein Erzeugendensystem von [mm] \IR^3 [/mm]

Hallo Freunde der Mathematik,

ich habe eine Vermutung, aber ich weiß leider nicht wie ich sie beweisen soll. Es geht doch darum mit Linearkombination alle Elemente aus [mm] \IR^3 [/mm] darstellen zu können, richtig? Jetzt steht auf meinem Blatt v1*k+v2*m+v4*n=(w1,w2,w3,0) wobei w1,w2,w3 [mm] \in \IR. [/mm] Wie geht es weiter? Wie kann ich das rechnerisch nachweisen??

Danke ;)

        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mi 16.11.2011
Autor: reverend

Hallo Ahnungsloser,

schreib [mm] \vec{v}_1, \vec{v}_2, \vec{v}_4 [/mm] als Matrix (mit den Vektoren als Spalten). Wenn deren Determinante [mm] \not=0 [/mm] ist, bilden die Vektoren ein Erzeugendensystem.

Grüße
reverend


Bezug
                
Bezug
Erzeugendensystem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:50 Mi 16.11.2011
Autor: derahnungslose

Danke Reverend für deine Antwort! Super:) mit der Antwort hätte ich nicht gerechnet. Wir haben Lineare Gleichungssysteme leider noch nicht behandelt, gibt es noch einen alternativen Weg?

Bezug
                
Bezug
Erzeugendensystem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:38 Mi 16.11.2011
Autor: derahnungslose

Wie berechne ich eine unsymmetrische Matrix?

Bezug
        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 16.11.2011
Autor: angela.h.b.


> Gegeben seien die Vektoren v1=(3,0,3,6), v2=(2,-1,1,2),
> v3=(-1,1,0,0), v4=(0,1,2,pi) und v5=(2,1,4,4+pi) [mm]\in\IR^4.[/mm]
> Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch
> sind und begründen Sie Ihre Antwort.
>  ...e) Die Vektoren v1,v2,v4 bilden ein Erzeugendensystem
> von [mm]\IR^3[/mm]

Hallo,

Deine Vektoren sind aus den [mm] \IR^4. [/mm]
Sie können einen Unterraum des [mm] \IR^4 [/mm] aufspannen, auch einen dreidimensionalen Unterraum des [mm] \IR^4. [/mm]
Aber nie und nimmer können sie den [mm] \IR^3 [/mm] aufspannen, denn dieser besteht aus Vektoren mit drei Einträgen.

Gruß v. Angela

>  Hallo Freunde der Mathematik,
>  
> ich habe eine Vermutung, aber ich weiß leider nicht wie
> ich sie beweisen soll. Es geht doch darum mit
> Linearkombination alle Elemente aus [mm]\IR^3[/mm] darstellen zu
> können, richtig? Jetzt steht auf meinem Blatt
> v1*k+v2*m+v4*n=(w1,w2,w3,0) wobei w1,w2,w3 [mm]\in \IR.[/mm] Wie
> geht es weiter? Wie kann ich das rechnerisch nachweisen??
>  
> Danke ;)


Bezug
                
Bezug
Erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Sa 19.11.2011
Autor: derahnungslose

Danke!
Aber ich frage mich, ob ich das so schreiben darf. Würde ich nicht Probleme bekommen, weil ich das nicht sauber begründet habe??

Bezug
                        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Sa 19.11.2011
Autor: donquijote


> Danke!
> Aber ich frage mich, ob ich das so schreiben darf. Würde
> ich nicht Probleme bekommen, weil ich das nicht sauber
> begründet habe??

Warum? Ein erzeugendensystem besteht per Definition aus Elementen des betrachteten Vektorraums bzw. Teilraums. Da deine Vektoren keine Elemente des [mm] \IR^3 [/mm] sind, können sie auch kein Erzeugendensystem des [mm] \IR^3 [/mm] bilden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]