Erzeugnis < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:52 Di 26.02.2008 | Autor: | Docy |
Hallo,
also ich würde gerne wissen, wenn (G,*) eine abelsche Gruppe ist, was ist dann das Erzeugnis von [mm] g\in [/mm] G, also <g>? Ist es [mm] =\{g^k | 1\le k\le ord(g)\}, [/mm] wobei ord(g) die Ordnung von g in G ist, also [mm] g^{ord(g)}=e.
[/mm]
Was wäre dann z.B. [mm] [/mm] in [mm] \IQ[x]? [/mm] Kann mir da einer helfen...
Gruß Docy
|
|
|
|
Hallo Docy,
das Erzeugnis <g> besteht aus allen Potenzen von g. Man kann es so aufschreiben, wie Du sagtest, mit $ [mm] k\in\IN [/mm] $, wobei man natürlch bedenken sollte, dass auch $ [mm] \mathrm{ord}(g)=\infty [/mm] $ möglich ist.
Übrigens schreibt man abelsche Gruppen oft additiv, als (G,+), womit die "Potenzen" die Form [mm] $g^k [/mm] = g+g+...+g = [mm] k\cdot [/mm] g$ erhalten.
Dein Beispiel $ < [mm] x^2+1 [/mm] > [mm] \subset \IQ[x]$ [/mm] besteht also aus allen Potenzen des Polynoms $ [mm] x^2+1 [/mm] : 1, [mm] x^2+1, x^4+2x^2+1, [/mm] ...$
Du hast nach dem gruppentheoretischen Erzeugnis gefragt. Das von von [mm] $x^2+1$ [/mm] erzeugte Ideal sieht hingegen anders aus, nebenbei bemerkt, falls es bei Dir evtl. im Ideal-Zusammenhang bzw. ringtheoretisch auftauchte.
Viele Grüße,
StefanK
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:54 Di 26.02.2008 | Autor: | Docy |
Vielen Dank und wieder super verständlich erklärt ^^
Gruß Docy
|
|
|
|