matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikEuler-Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Euler-Verfahren
Euler-Verfahren < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mi 21.11.2012
Autor: black_jaguar

Aufgabe
Betrachten Sie das AWP
y [mm] =\wurzel{|y|}, [/mm]
x≥0
y(0) = a.
a) Zeigen Sie, dass
y : [mm] \IR+(mit [/mm] 0) [mm] \to \IR, [/mm] x [mm] \mapsto [/mm] (x/2+ [mm] \wurzel{a})^2 [/mm]
,a≥0
das AWP löst.
b) Welche Näherungslösung liefert das explizite Euler-Verfahren für a = 0? Erklären Sie dieses
Ergebnis!

Wie zeige ich dies?

        
Bezug
Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 23.11.2012
Autor: meili

Hallo black_jaguar,
> Betrachten Sie das AWP
>  y [mm]=\wurzel{|y|},[/mm]

Soll das $y' = [mm] \wurzel{|y|}$ [/mm] heißen?

>  x≥0
>  y(0) = a.
>  a) Zeigen Sie, dass
>  y : [mm]\IR+(mit[/mm] 0) [mm]\to \IR,[/mm] x [mm]\mapsto[/mm] (x/2+ [mm]\wurzel{a})^2[/mm]

$y: [mm] \IR_+^0 \to \IR$ [/mm] ?

>  ,a≥0
>  das AWP löst.
>  b) Welche Näherungslösung liefert das explizite
> Euler-Verfahren für a = 0? Erklären Sie dieses
>  Ergebnis!
>  Wie zeige ich dies?

Für a) Ableitung von y bilden und mit dem AWP vergleichen.
b) Euler-Verfahren durchführen und  mit dem was bei a) für a = 0 heraus
kommt vergleichen.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]