matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenEuler Lagrange lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentialgleichungen" - Euler Lagrange lösen
Euler Lagrange lösen < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler Lagrange lösen: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 17:03 Fr 13.12.2013
Autor: Teekocher

Hallo liebes Forum,

ich hätte eine kurze Frage zur Bearbeitung der Variationsprobleme, die man mittels Aufstellen der Euler-Lagrange-Gleichungen löst. Angenommen es liegt ein Problem folgender Form vor:

gesucht sind Funktionen f und g, die folgendes Funktional minimieren:

[mm] J(f,g)=\integral_{a}^{b}{F(x,f(x),f'(x),g(x),g'(x))dx}. [/mm]

Häufig betrachten man dieses Minimierungsproblem unter Nebenbedingungen.

Meine Frage wäre: wie könnte ich dieses Problem lösen, wenn für g vorausgesetzt wird, dass g eine konstante ist? Und wie könnte ich dann diese Voraussetzung in Form einer gültigen Nebenbedingung darstellen?

Vielleicht kennt jemand einen passenden Satz, bei dem man für eine der funktionen zugelassen darf, dass sie eine Konstante ist. Ich bin vergeblich auf der Suche.

Vielen Dank im voraus,

Teekocher.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Euler Lagrange lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:44 So 22.12.2013
Autor: Al-Chwarizmi


> Hallo liebes Forum,
>  
> ich hätte eine kurze Frage zur Bearbeitung der
> Variationsprobleme, die man mittels Aufstellen der
> Euler-Lagrange-Gleichungen löst. Angenommen es liegt ein
> Problem folgender Form vor:
>  
> gesucht sind Funktionen f und g, die folgendes Funktional
> minimieren:
>  
> [mm]J(f,g)=\integral_{a}^{b}{F(x,f(x),f'(x),g(x),g'(x))dx}.[/mm]
>  
> Häufig betrachten man dieses Minimierungsproblem unter
> Nebenbedingungen.
>  
> Meine Frage wäre: wie könnte ich dieses Problem lösen,
> wenn für g vorausgesetzt wird, dass g eine konstante ist?
> Und wie könnte ich dann diese Voraussetzung in Form einer
> gültigen Nebenbedingung darstellen?
>  
> Vielleicht kennt jemand einen passenden Satz, bei dem man
> für eine der funktionen zugelassen darf, dass sie eine
> Konstante ist.


Hallo Teekocher,

ich kann mir eigentlich nur vorstellen, dass die Aufgabe
gegenüber dem allgemeineren Fall mit zwei gesuchten
Funktionen f und g einfacher wird, wenn vorausgesetzt
werden darf, dass g konstant ist. Die anfängliche
Funktion F reduziert sich doch dabei zu einer einfacheren,
nämlich

      [mm] $\overline{F}(x,f(x),f'(x),g)\ [/mm] :=\ F(x,f(x),f'(x),g,0)$

Für konkretere Ratschläge solltest du wohl auch die Frage
konkretisieren.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]