matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikEuler'sche Bewegungsgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Euler'sche Bewegungsgleichung
Euler'sche Bewegungsgleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euler'sche Bewegungsgleichung: Herleitung
Status: (Frage) beantwortet Status 
Datum: 17:12 Fr 22.08.2008
Autor: Braunstein

Hallo,

ich beschäftige mich gerade mit der Herleitung der Wellengleichung (in der Akustik). Probleme macht mir folgende Gleichung: Die Euler'sche Bewegungsgleichung

[mm] \vec{F}=m*\vec{a} [/mm]
[mm] \vec{F}=p*\vec{A} [/mm] ... p=Schalldruck, A=Fläche

Es lautet nun:
[mm] \vec{F}=p*\vec{A} [/mm]
[mm] F_{x}=p_{x}*A_{x}=[p(x)-p(x+dx)]*dy*dz [/mm]

Und da liegt das Problem: p(x)-p(x+dx)
Wenn ich durch dx dividiere, erhalte ich - [mm] \bruch{dp}{dx}, [/mm] aber ich kann das nicht logisch nachvollziehen.

Wenn der Druck in Richtung 'x+dx' größer als in Richtung 'x' ist,  wird dann die Kraft negativ??? Ich kann mir darunter nichts vorstellen. Bitte um HILFE!!!

        
Bezug
Euler'sche Bewegungsgleichung: Differentialquotient
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 22.08.2008
Autor: Loddar

Hallo Braunstein!


Das kannst Du hier rein mathematisch betrachten. Denn es wurde hier die Definition der Ableitung über den Diffrenzenquotienten angewandt:
$$f'(a) \ := \ [mm] \limes_{h\rightarrow 0}\bruch{f(a+h)-f(a)}{h}$$ [/mm]


Das heißt für Deine Aufgabe:
[mm] $$\bruch{p(x)-p(x+dx)}{dx} [/mm] \ = \ [mm] \bruch{-p(x+dx)+p(x)}{dx} [/mm] \ = \ [mm] \bruch{-[p(x+dx)-p(x)]}{dx} [/mm] \ = \ - \ [mm] \underbrace{\bruch{p(x+dx)-p(x)}{dx}}_{= \ \bruch{dp}{dx}}$$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Euler'sche Bewegungsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Fr 22.08.2008
Autor: Braunstein

Hey,

vielen Dank für die Antwort. Mir ist schon klar, warum - [mm] \bruch{dp}{dx} [/mm] schließlich und endlich da steht. Ich kann aber physikalisch nicht nachvollziehen, warum es heißt:

p(x)-p(x+dx)




Bezug
                        
Bezug
Euler'sche Bewegungsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Fr 22.08.2008
Autor: piet.t

Hallo,

entscheidend für die Kraft ist doch nicht der Druck p(x) an einer bestimmten Stelle x, sondern der Druckunterschied [mm] $\Delta [/mm] p$ zwischen dem Druck an der der Stelle x und einer "benachbarten" Stelle x+dx. Packen wir zwischen diese beiden Punkte ein kleines Flächenstück $dy [mm] \cdot [/mm] dz$ (das senkrecht zur x-Achse steht), dann wirkt auf dieses die Kraft [mm] $F=\Delta [/mm] p [mm] \cdot dy\cdot [/mm] dz = [mm] (p(x)-p(x+dx))\cdot dy\cdot [/mm] dz$.
Jetzt zu den Vorzeichen: Nehmen wir mal an, p(x+dx) > p(x). Das bedeutet doch, dass in positiver x-Richtung ein höherer Druck herrscht. Die Kraft wirkt aber in Richtung des geringeren Drucks (zum Glück für alle Staubsaugerhersteller), also in negativer x-Richtung - daher das Minuszeichen.

Nun etwas klarer?

Gruß

piet

Bezug
                                
Bezug
Euler'sche Bewegungsgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:27 So 24.08.2008
Autor: Braunstein

Vielen herzlichen Dank.
Du hast mir mit deiner Antwort sehr geholfen! :)

lg - h.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]