matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieEulersche Phi-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Eulersche Phi-Funktion
Eulersche Phi-Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Phi-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:39 Mi 07.05.2008
Autor: grenife

Aufgabe
Gegeben sei die Eulersche [mm] $\varphi$-Funktion [/mm] sowie zwei natürliche Zahlen [mm] $m,n\in\mathbb{N}$. [/mm] Beweisen Sie:
[mm] $\varphi(mn)\cdot\varphi (ggT(m,n))=\varphi (m)\cdot \varphi (m)\cdot [/mm] ggT(m,n)$

Hallo zusammen,

bräuchte einen kleinen Tipp bei diesem Beweis. Für den Fall, dass $m,n$ teilerfremd sind, ist der Beweis einfach: In diesem Fall folgt aus der Multiplikativität der [mm] $\varphi$-Funktion, [/mm] dass
[mm] $\varphi(mn)=\varphi(m)\cdot \varphi(n)$ [/mm] gilt. Außerdem ist [mm] $\varphi (ggT(m,n)=\varphi [/mm] (1)=1=ggt(m,n)$.

Nur leider komme ich für den anderen Fall nicht weiter (also den Fall, dass $m$ und $n$ nicht teilerfremd sind).

Vielleicht könnte mir ja jemand dankenswerterweise einen Tipp geben.

Viele Dank und viele Grüße
Gregor

        
Bezug
Eulersche Phi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mi 07.05.2008
Autor: felixf

Hallo!

> Gegeben sei die Eulersche [mm]\varphi[/mm]-Funktion sowie zwei
> natürliche Zahlen [mm]m,n\in\mathbb{N}[/mm]. Beweisen Sie:
>  [mm]\varphi(mn)\cdot\varphi (ggT(m,n))=\varphi (m)\cdot \varphi (m)\cdot ggT(m,n)[/mm]

Hinter dem Gleichheitszeichen soll eins der [mm] $\varphi(m)$ [/mm] wohl ein [mm] $\varphi(n)$ [/mm] sein, oder?

> Hallo zusammen,
>  
> bräuchte einen kleinen Tipp bei diesem Beweis. Für den
> Fall, dass [mm]m,n[/mm] teilerfremd sind, ist der Beweis einfach: In
> diesem Fall folgt aus der Multiplikativität der
> [mm]\varphi[/mm]-Funktion, dass
>  [mm]\varphi(mn)=\varphi(m)\cdot \varphi(n)[/mm] gilt. Außerdem ist
> [mm]\varphi (ggT(m,n)=\varphi (1)=1=ggt(m,n)[/mm].
>  
> Nur leider komme ich für den anderen Fall nicht weiter
> (also den Fall, dass [mm]m[/mm] und [mm]n[/mm] nicht teilerfremd sind).

Ich wuerd's so machen: schreibe $a$ und $b$ als Produkt von Primzahlpotenzen, etwa $a = [mm] \prod_{i=1}^k p_i^{e_i}$ [/mm] unf $b = [mm] \prod_{i=1}^k p_i^{f_i}$ [/mm] mit [mm] $e_i, f_i \ge [/mm] 0$.

Dann kannst du die Behauptung darauf zurueckfuehren, dass du es fuer $a = [mm] p_i^{e_i}$ [/mm] und $b = [mm] p_i^{f_i}$ [/mm] zeigst fuer festes $i$. Und fuer Primzahlpotenzen kannst du das relativ einfach machen; nimm einfach [mm] $e_i \le f_i$ [/mm] an, dann kannst du ggT etc. exakt hinschreiben.

LG Felix


Bezug
                
Bezug
Eulersche Phi-Funktion: Danksagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Do 08.05.2008
Autor: grenife

Hallo Felix!

erstmal wieder vielen Dank für Deinen Hinweis!
Habe die Lösung mit Hilfe des (mir zuvor unbekannten) Zusammenhangs:
[mm] $\varphi(p^k)=p^k\cdot (1-\frac{1}{p})$ [/mm] gelöst.

Vielen Dank und viele Grüße
Gregor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]