matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenEulersche Zahl?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Eulersche Zahl?
Eulersche Zahl? < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Zahl?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:13 Mo 26.05.2008
Autor: tim_tempel

Aufgabe
Versuche folgende Funktion abzuleiten:

     [mm] F(s) = 2se^{-as}[/mm]

Hallo,

beim Ableiten habe ich so meine Probleme. Das e steht doch für die Eulersche Zahl?
Dann hätte ich [mm] e^{-as} = In(-as) [/mm]?
Wie bilde ich jetzt die Ableitung?

Gruß, Tim

        
Bezug
Eulersche Zahl?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mo 26.05.2008
Autor: angela.h.b.


> Versuche folgende Funktion abzuleiten:
>  
> [mm]F(s) = 2se^{-as}[/mm]
>
> Hallo,
>  
> beim Ableiten habe ich so meine Probleme. Das e steht doch
> für die Eulersche Zahl?

Hallo,

ja.

>  Dann hätte ich [mm]e^{-as} = In(-as) [/mm]?

???

[mm] e^{-as}=\bruch{1}{e^{as}}. [/mm]

>  Wie bilde ich jetzt
> die Ableitung?

Du mußt hier Produkt und Kettenregel verwenden:

zunächst einmal hast Du es mit dem Produkt von f(s)=2s und [mm] g(s)=e^{-as} [/mm] zu tun, die benötigte Ableitung von [mm] e^{as} [/mm] bekommst Du mit der Kettenregel, denn es sind hier ja die e-Funktion und as verkettet.

Gruß v. Angela

Bezug
                
Bezug
Eulersche Zahl?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Mo 26.05.2008
Autor: tim_tempel

Hänge jetzt schon etwas länger an der Aufgabe, dass mit dem Produkt habe ich gesehen nur die Kettenregel bereitet mir hier Schwierigkeiten.

Habe:

     [mm] F'(s) = u'(x)*v(x) + u(x)*v'(x) [/mm]


[mm] u(x) = 2s [/mm]
[mm] u'(x) = 2s [/mm]
[mm] v(x) = e^{-as}= \bruch{1}{e^{as}} [/mm]
[mm] v'(x) = ?[/mm]

Wenn ich jetzt die Kettenregel nehme, habe ich mit  [mm] u(v) = v^{-as} = \bruch{1}{v^{as}}[/mm] und v(x)= ?

Komme ab hier nicht weiter?

Bezug
                        
Bezug
Eulersche Zahl?: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:31 Mo 26.05.2008
Autor: Loddar

Hallo Tim!



> [mm]u(x) = 2s[/mm]
> [mm]u'(x) = 2s[/mm]

[notok] Das $s_$ feällt doch weg und es verbleibt $u' \ = \ 2$ .


> [mm]v(x) = e^{-as}= \bruch{1}{e^{as}} [/mm]
> [mm]v'(x) = ?[/mm]
>  
> Wenn ich jetzt die Kettenregel nehme, habe ich mit  [mm]u(v) = v^{-as} = \bruch{1}{v^{as}}[/mm]

??? Wie kommst Du darauf? Mittels MBKettenregel ergibt sich:
$$v' \ = \ [mm] e^{-a*s}*(-a)$$ [/mm]

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]