matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenExistenz Bilineare Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Existenz Bilineare Abbildung
Existenz Bilineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Bilineare Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 15.01.2011
Autor: Sujentha

Aufgabe
Existiert eine bilineare Abbildung [mm]\alpha: \IR^2 \times \IR^2 \to \mathbb R^2[/mm],so dass
[mm]\alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 3 \\ -2 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) = \begin{pmatrix} 8 \\ 7 \end{pmatrix}[/mm]
[mm]\alpha \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 12 \end{pmatrix}[/mm] gilt?
Falls ja,berechnen Sie [mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right)[/mm].Ist [mm]\alpha[/mm] symmetrisch oder alternierend?

Hallo,

mein Problem bei der Aufgabe ist es,dass gefragt wird,ob es so eine Abbildung gibt. Wie zeige ich das?
[mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right)[/mm] muss ich ja nur als Linearkombination darstellen,dann kann ich es berechen,oder?
Also erhalte ich da:
[mm]\alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) = \alpha \left(2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}+ 1 \begin{pmatrix} 0 \\ 1 \end{pmatrix},1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) =\alpha \left(2\begin{pmatrix} 1 \\ 0 \end{pmatrix},1\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) + \alpha \left(2\begin{pmatrix} 1 \\ 0 \end{pmatrix},3\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)+\alpha \left(1\begin{pmatrix} 0 \\ 1 \end{pmatrix},1\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)+\alpha \left(1\begin{pmatrix} 0 \\ 1 \end{pmatrix},3\begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)=2\alpha\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) +6\alpha\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) +1\alpha\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) +3\alpha\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) =2\begin{pmatrix} 1 \\ 2 \end{pmatrix} +6\begin{pmatrix} 3 \\ -2 \end{pmatrix} +1\begin{pmatrix} 8 \\ 7 \end{pmatrix} +3\begin{pmatrix} 1 \\ 12 \end{pmatrix} =\begin{pmatrix} 31 \\ 35 \end{pmatrix}[/mm]

Symmetrisch/Alternierend:
für Symmetrie gilt:
[mm]\alpha(v_1,v_2)=\alpha(v_2,v_1)[/mm]
Alternierend:
[mm]\alpha(v_1,v_2)=-\alpha(v_2,v_1)[/mm]
Somit wäre die Abbildung weder noch,da
$ [mm] \alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) \not=\alpha \left(\begin{pmatrix} 1 \\ 3 \end{pmatrix},\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right) \not= -\alpha \left(\begin{pmatrix} 1 \\ 3 \end{pmatrix},\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right)$ [/mm]

Ich hoffe,ihr könnt mir helfen,quäle mich momentan mehr schlecht als recht durch das Thema bilineare Abbildungen. ;-)

Gruß,Sujentha.

        
Bezug
Existenz Bilineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 15.01.2011
Autor: rastamanana

Hallo sujentha,

Du kriegst die explizite Form durch Kombinationen raus...

$ [mm] \alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 1 \\ 2 \end{pmatrix} [/mm] $

[mm] $\Rightarrow \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} b \\ 0 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} ab \\ 2ab \end{pmatrix} [/mm] $

und

$ [mm] \alpha \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 3 \\ -2 \end{pmatrix} [/mm] $

[mm] $\Rightarrow \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ d \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} 3ad \\ -2ad \end{pmatrix} [/mm] $

Daraus folgt dann: $ [mm] \alpha \left(\begin{pmatrix} a \\ 0 \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right) [/mm] = [mm] \begin{pmatrix} ab + 3ad \\ 2ab - 2 ad \end{pmatrix} [/mm] $


Wenn du jetzt noch ähnlich mit den anderen beiden Gleichungen verfährst, bekommt du eine explizite Form für

$ [mm] \alpha \left(\begin{pmatrix} a \\ c \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right) [/mm]  $

An den gegebenen Gleichungen kann man auch erkennen, dass [mm] %\alpha$ [/mm] weder symmetrisch noch alternierend ist.

Bezug
                
Bezug
Existenz Bilineare Abbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:14 Sa 15.01.2011
Autor: Sujentha

Vielen Dank, da bin ich überhaupt nicht drauf gekommen,mit der expliziten Vorschrift lässt sich auch
$ [mm] \alpha \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix},\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right) [/mm] $ viel schneller berechnen.
$ [mm] \alpha \left(\begin{pmatrix} a \\ c \end{pmatrix},\begin{pmatrix} b \\ d \end{pmatrix} \right)= \vektor{ab+3ad+8bc+cd \\ 2ab-2ad+7bc+12cd}$ [/mm] habe ich nun raus.
Eine Frage hab ich noch:muss ich jetzt noch die Axiome für bilineare Abbildungen überprüfen oder ist es klar,dass die Abbildung bilinear ist?

Bezug
                        
Bezug
Existenz Bilineare Abbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mo 17.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]