matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationExistenz des Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Existenz des Integrals
Existenz des Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Sa 10.04.2010
Autor: MontBlanc

Aufgabe
Entscheiden Sie begründet, ob das folgende Integral existiert (Versuchen Sie NICHT es zu bestimmen):

[mm] \integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx} [/mm]

Hallo,

solche Aufgaben fallen mir generell immer sehr schwer, weil ich nicht weiß, wann eine Singularität integrierbar ist und wann nicht.

Hier sind die kritischen Stellen, wenn der Nenner null wird, also x=0 und [mm] x=\pi [/mm] sowie [mm] x\to\infty. [/mm]
Ich habe jetzt das Problem, dass ich gar nicht weiß, wie ich da ansetze, wenn ich nun bsp. die Stelle [mm] x=\pi [/mm] betrachten will.
Natürlich gibt es kein Patentrezept, aber man kann ja nicht so vollkommen planlos da ran gehen wie ich.

Lg

        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Sa 10.04.2010
Autor: rainerS

Hallo!

> Entscheiden Sie begründet, ob das folgende Integral
> existiert (Versuchen Sie NICHT es zu bestimmen):
>  
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> Hallo,
>  
> solche Aufgaben fallen mir generell immer sehr schwer, weil
> ich nicht weiß, wann eine Singularität integrierbar ist
> und wann nicht.
>  
> Hier sind die kritischen Stellen, wenn der Nenner null
> wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  Ich habe jetzt das Problem, dass ich gar nicht weiß, wie
> ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> betrachten will.

Schau dir doch erst einmal das Verhalten des Integranden an den kritischen Stellen an, also z.B.

[mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].

Wenn dieser Limes endlich ist, kann an diesem kritischen Punkt gar nichts passieren. (Warum?)

Tipp: der Faktor [mm] $\bruch{x+1}{x^{3/2}}$ [/mm] ist sowieso endlich, also geht es nur um den Limes

[mm] \limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].

Viele Grüße
   Rainer

Bezug
                
Bezug
Existenz des Integrals: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 17:28 Sa 10.04.2010
Autor: abakus


> Hallo!
>  
> > Entscheiden Sie begründet, ob das folgende Integral
> > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > Hallo,
>  >  
> > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > ich nicht weiß, wann eine Singularität integrierbar ist
> > und wann nicht.
>  >  
> > Hier sind die kritischen Stellen, wenn der Nenner null
> > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  Ich habe jetzt das Problem, dass ich gar nicht weiß,
> wie
> > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > betrachten will.
>
> Schau dir doch erst einmal das Verhalten des Integranden an
> den kritischen Stellen an, also z.B.
>  
> [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> Wenn dieser Limes endlich ist, kann an diesem kritischen
> Punkt gar nichts passieren. (Warum?)
>  
> Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,

Allerdings nur, wenn x gegen unendlich geht. An der linken Intervallgrenze (x=0) muss man schon mal etwas genauer hinsehen.
Gruß Abakus

> also geht es nur um den Limes
>  
> [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].
>  
> Viele Grüße
>     Rainer


Bezug
                        
Bezug
Existenz des Integrals: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:26 Sa 10.04.2010
Autor: rainerS

Hallo!

> > Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> Allerdings nur, wenn x gegen unendlich geht. An der linken
> Intervallgrenze (x=0) muss man schon mal etwas genauer
> hinsehen.

Ja natürlich, ich meinte auch nur in der Umgebung von [mm] $x=\pi$. [/mm] An den Grenzen des Integrals muss man genauer hinsehen.

Viele Grüße
   Rainer



Bezug
                
Bezug
Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 Sa 10.04.2010
Autor: MontBlanc

Hallo,

danke für eure Antworten.

> Hallo!
>  
> > Entscheiden Sie begründet, ob das folgende Integral
> > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > Hallo,
>  >  
> > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > ich nicht weiß, wann eine Singularität integrierbar ist
> > und wann nicht.
>  >  
> > Hier sind die kritischen Stellen, wenn der Nenner null
> > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  Ich habe jetzt das Problem, dass ich gar nicht weiß,
> wie
> > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > betrachten will.
>
> Schau dir doch erst einmal das Verhalten des Integranden an
> den kritischen Stellen an, also z.B.
>  
> [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> Wenn dieser Limes endlich ist, kann an diesem kritischen
> Punkt gar nichts passieren. (Warum?)
>  
> Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> also geht es nur um den Limes
>  
> [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].

Wenn x hier gegen [mm] \pi [/mm] geht, dann geht der Grenzwert gegen (-1). der andere Grenzwert ist sowieso endlich. Das sollte also eigentlich kein Problem sein. Nur eine Frage, wie kamst du auf die Umformung zu [mm] -\bruch{sin(x-\pi)}{x-\pi} [/mm] ?

So jetzt versuche ich mich mal an x=0

Also, wenn x gegen null geht, dann ist $ sin(x) [mm] \approx [/mm] x $ also habe ich

[mm] \bruch{(x+1)*x}{x^{3/2}*(x-\pi)} [/mm] dividiere ich jetzt durch [mm] x^{3/2} [/mm] dann erhalte ich [mm] \bruch{x^{1/2}+x^{-1/2}}{x-\pi} [/mm] das geht jetzt für kleine x gegen [mm] \bruch{-1}{x^{1/2}}. [/mm] Wäre also endlich. ergo integrierbar.

Für [mm] x\to\infty [/mm] bin ich mir jetzt nicht ganz sicher, ich würde sagen, dass der Grenzwert gegen null geht, kanns aber nicht wirklich begründen. Wie gehe ich da vor ?

> Viele Grüße
>     Rainer


Lg

Bezug
                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Sa 10.04.2010
Autor: abakus


> Hallo,
>  
> danke für eure Antworten.
>  
> > Hallo!
>  >  
> > > Entscheiden Sie begründet, ob das folgende Integral
> > > existiert (Versuchen Sie NICHT es zu bestimmen):
>  >  >  
> > >
> >
> [mm]\integral_{0}^{\infty}{\bruch{(x+1)*sin(x)}{x^{3/2}*(x-\pi)} dx}[/mm]
>  
> >  

> > >  

> > > Hallo,
>  >  >  
> > > solche Aufgaben fallen mir generell immer sehr schwer, weil
> > > ich nicht weiß, wann eine Singularität integrierbar ist
> > > und wann nicht.
>  >  >  
> > > Hier sind die kritischen Stellen, wenn der Nenner null
> > > wird, also x=0 und [mm]x=\pi[/mm] sowie [mm]x\to\infty.[/mm]
>  >  >  Ich habe jetzt das Problem, dass ich gar nicht
> weiß,
> > wie
> > > ich da ansetze, wenn ich nun bsp. die Stelle [mm]x=\pi[/mm]
> > > betrachten will.
> >
> > Schau dir doch erst einmal das Verhalten des Integranden an
> > den kritischen Stellen an, also z.B.
>  >  
> > [mm]\limes_{x\to\pi} \bruch{(x+1)*\sin x }{x^{3/2}*(x-\pi)} [/mm].
>  
> >  

> > Wenn dieser Limes endlich ist, kann an diesem kritischen
> > Punkt gar nichts passieren. (Warum?)
>  >  
> > Tipp: der Faktor [mm]\bruch{x+1}{x^{3/2}}[/mm] ist sowieso endlich,
> > also geht es nur um den Limes
>  >  
> > [mm]\limes_{x\to\pi} \bruch{\sin x }{x-\pi} = - \limes_{x\to\pi} \bruch{\sin( x-\pi) }{x-\pi} [/mm].
>  
> Wenn x hier gegen [mm]\pi[/mm] geht, dann geht der Grenzwert gegen
> (-1). der andere Grenzwert ist sowieso endlich. Das sollte
> also eigentlich kein Problem sein. Nur eine Frage, wie
> kamst du auf die Umformung zu [mm]-\bruch{sin(x-\pi)}{x-\pi}[/mm] ?

Quadrantenbeziehúngen. Es gilt sin x= [mm] sin(\pi-x)=- sin(x-\pi). [/mm]

>  
> So jetzt versuche ich mich mal an x=0
>  
> Also, wenn x gegen null geht, dann ist [mm]sin(x) \approx x[/mm]
> also habe ich
>
> [mm]\bruch{(x+1)*x}{x^{3/2}*(x-\pi)}[/mm] dividiere ich jetzt durch
> [mm]x^{3/2}[/mm] dann erhalte ich [mm]\bruch{x^{1/2}+x^{-1/2}}{x-\pi}[/mm]
> das geht jetzt für kleine x gegen [mm]\bruch{-1}{x^{1/2}}.[/mm]

Hallo? [mm] x^{-1/2} [/mm] geht dann gegen unendlich.
Kürze lieber x im Bruch  [mm]\bruch{(x+1)*x}{x^{3/2}*(x-\pi)}[/mm], dann erhältst du  [mm]\bruch{(x+1)}{x^{1/2}*(x-\pi)}[/mm].
In der Nähe von 0 ist  [mm]\bruch{(x+1)}{(x-\pi)}[/mm] endlich, die Frage ist also, ob du [mm]\bruch{1}{x^{1/2}}[/mm] bis an die Null heran integrieren kannst.
Gruß Abakus

> Wäre also endlich. ergo integrierbar.
>  
> Für [mm]x\to\infty[/mm] bin ich mir jetzt nicht ganz sicher, ich
> würde sagen, dass der Grenzwert gegen null geht, kanns
> aber nicht wirklich begründen. Wie gehe ich da vor ?
>  
> > Viele Grüße
>  >     Rainer
>
>
> Lg


Bezug
                                
Bezug
Existenz des Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Sa 10.04.2010
Autor: MontBlanc

Hi,

[mm] \bruch{1}{\wurzel{x}} [/mm] kann ich bis an die null heran integrieren. Das funktioniert also glaube ich, da es zu [mm] 2\wurzel{x} [/mm] integriert.

So, wenn [mm] x\to\infty [/mm] dann habe ich ist der Integrand nach Division durch [mm] \bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}. [/mm] Der größte Term ist hier [mm] x^{-1/2} [/mm] und das ist integrierbar. Ich würde also sagen, dass auch das kein Problem sein sollte. Ist die Argumentation okay ?

Lg

Bezug
                                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Sa 10.04.2010
Autor: abakus


> Hi,
>  
> [mm]\bruch{1}{\wurzel{x}}[/mm] kann ich bis an die null heran
> integrieren.

Stimmt.

> Das funktioniert also glaube ich, da es zu
> [mm]2\wurzel{x}[/mm] integriert.
>  
> So, wenn [mm]x\to\infty[/mm] dann habe ich ist der Integrand nach
> Division durch [mm]\bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}.[/mm]
> Der größte Term ist hier [mm]x^{-1/2}[/mm] und das ist
> integrierbar. Ich würde also sagen, dass auch das kein
> Problem sein sollte. Ist die Argumentation okay ?
>  
> Lg

Ich denke schon. Du musst halt nur die ganzen Puzzleteile etwas strukturiert zusammenfügen.
Gruß Abakus


Bezug
                                        
Bezug
Existenz des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 11.04.2010
Autor: rainerS

Hallo!

> Hi,
>  
> [mm]\bruch{1}{\wurzel{x}}[/mm] kann ich bis an die null heran
> integrieren. Das funktioniert also glaube ich, da es zu
> [mm]2\wurzel{x}[/mm] integriert.
>  
> So, wenn [mm]x\to\infty[/mm] dann habe ich ist der Integrand nach
> Division durch [mm]\bruch{(x^{-1/2}+x^{-3/2})*sin(x)}{x-\pi}.[/mm]
> Der größte Term ist hier [mm]x^{-1/2}[/mm] und das ist
> integrierbar. Ich würde also sagen, dass auch das kein
> Problem sein sollte. Ist die Argumentation okay ?

Das ist mir nicht klar. Hast du den Nenner vergessen oder nicht?

1. ist [mm] $x^{-1/2}$ [/mm] nicht bis [mm] $\infty$ [/mm] integrierbar, und 2. ist für [mm] $x\gg\pi$ [/mm]

[mm] \bruch{1}{x-\pi} \approx x^{-1} [/mm] ,

und damit ist der größte Term [mm] $x^{-3/2}$, [/mm] und der ist in der Tat bis [mm] $\infty$ [/mm] integrierbar.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]