matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenExistenz einer LinAb
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Existenz einer LinAb
Existenz einer LinAb < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer LinAb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mi 29.07.2009
Autor: nikinho

Aufgabe
Gibt es eine lineare Abbildung F: [mm] R^2 [/mm] -> [mm] R^2 [/mm] mit
F(2,0) = (0,1)
F(1,1) = (5,2)
F(1,2) = (2,3)

Hallo,
ich habe die Aufgabe so gelöst:
Angenommen F linear:
(1,2) = 4 * (1,1) - 2 * (2,0)
F(1,2) = F ( 4 * (1,1) - 2 * (2,0) )
F(1,2) = 4* F(1,1)  - 2 * F(2,0)
(2,3) = (20,6)
Widerspruch -> gibt keine lineare Abb.

Fragen:
Stimmt das so?
Gibt es da ein Schema nach dem man solche Aufgaben bearbeiten kann oder muss man sich das immer irgendwie so überlegen?

        
Bezug
Existenz einer LinAb: Antwort
Status: (Antwort) fertig Status 
Datum: 16:38 Mi 29.07.2009
Autor: fred97


> Gibt es eine lineare Abbildung F: [mm]R^2[/mm] -> [mm]R^2[/mm] mit
>  F(2,0) = (0,1)
>  F(1,1) = (5,2)
>  F(1,2) = (2,3)
>  Hallo,
>  ich habe die Aufgabe so gelöst:
>  Angenommen F linear:
>  (1,2) = 4 * (1,1) - 2 * (2,0)

Aua ! Das stimmt aber nicht ! Dennoch: Deine Vorgehensweise ist richtig. Noch ein Versuch !

FRED



>  F(1,2) = F ( 4 * (1,1) - 2 * (2,0) )
>  F(1,2) = 4* F(1,1)  - 2 * F(2,0)
>  (2,3) = (20,6)
>  Widerspruch -> gibt keine lineare Abb.

>  
> Fragen:
> Stimmt das so?
>  Gibt es da ein Schema nach dem man solche Aufgaben
> bearbeiten kann oder muss man sich das immer irgendwie so
> überlegen?


Bezug
                
Bezug
Existenz einer LinAb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Mi 29.07.2009
Autor: nikinho

ja stimmt.. natürlich
(1,2) = 2 (1,1) - 0,5 (2,0)

kommt bei mir dann trotzdem zu nem widerspruch.
also ist das die standardvorgehensweise? dann ist ja alles klar :) danke

Bezug
                        
Bezug
Existenz einer LinAb: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Mi 29.07.2009
Autor: fred97


> ja stimmt.. natürlich
>  (1,2) = 2 (1,1) - 0,5 (2,0)
>  
> kommt bei mir dann trotzdem zu nem widerspruch.

Na also


>  also ist das die standardvorgehensweise?

Meist geht man es so an

FRED



> dann ist ja alles
> klar :) danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]