matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenExistenz einer globalen Lösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Existenz einer globalen Lösung
Existenz einer globalen Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer globalen Lösung: Tipp,
Status: (Frage) beantwortet Status 
Datum: 21:59 Mi 16.05.2018
Autor: Filza

Aufgabe
Gegeben ist folgendes System:
[mm] u'(t)=sqrt(1+u(t)^2)+v(t)^3*sin(u(t))-u(t)^7 [/mm]
[mm] v'(t)=u(t)(1-v(t)^2*sin(u(t)) [/mm]
[mm] u(0)=u_0 [/mm] und [mm] v(0)=v_0 [/mm]
Man soll zeigen dass [mm] \forall(u_0,v_0) \in \IR [/mm] genau eine Lsg [mm] \forall [/mm] t>=0 existiert.

Könnte man sagen, dass da u'(t) und v'(t) stetig sind dass es dann lipschitz stetig ist, und daraus die behauptung
Würde mich auf ein paar Ideen freuen
Vielen Dank im Voraus:)


Könnte man sagen, dass, da u'(t) und v'(t) stetig sind dass es dann lipschitz stetig ist, und daraus die behauptung folgt
Würde mich auf ein paar Ideen freuen
Vielen Dank im Voraus:)


        
Bezug
Existenz einer globalen Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:53 Do 17.05.2018
Autor: fred97


> Gegeben ist folgendes System:
>  [mm]u'(t)=sqrt(1+u(t)^2)+v(t)^3*sin(u(t))-u(t)^7[/mm]
>  [mm]v'(t)=u(t)(1-v(t)^2*sin(u(t))[/mm]
>  [mm]u(0)=u_0[/mm] und [mm]v(0)=v_0[/mm]
>  Man soll zeigen dass [mm]\forall(u_0,v_0) \in \IR[/mm] genau eine
> Lsg [mm]\forall[/mm] t>=0 existiert.
>  
> Könnte man sagen, dass da u'(t) und v'(t) stetig sind dass
> es dann lipschitz stetig ist, und daraus die behauptung

Au weia ! Sei nicht böse, aber so wie Du Deine Anfrage formulierst, scheinst Du nicht viel aus Deiner Vorlesung mitgenommen zu haben ...




>  Würde mich auf ein paar Ideen freuen
>  Vielen Dank im Voraus:)
>  
> Könnte man sagen, dass, da u'(t) und v'(t) stetig sind
> dass es dann lipschitz stetig ist, und daraus die
> behauptung folgt
>  Würde mich auf ein paar Ideen freuen
>  Vielen Dank im Voraus:)
>  


Zunächst definieren wir die Funktion $f: [mm] \IR^2 \to \IR^2$ [/mm] durch

[mm] $f(u,v)=\vektor{\sqrt{1+u^2}v^3 \sin u - u^7 \\ u(1-v^2 \sin u)}$ [/mm]

Dann schreibt sich obiges Anfangswertproblem wie folgt:

[mm] \vektor{u'(t)\\ v'(t)}=f(u(t),v(t)). u(0)=u_0, v(0)=v_0. [/mm]

Nun zeige zuerst, dass f auf [mm] \IR^2 [/mm] lokal Lipschitzstetig ist. Das ist erledigt, wenn Du folgendes gemacht hast: ist (a,b) [mm] \in \IR^2, [/mm] so zeige, dass es eine Umgebung U von (a,b) gibt auf der die Jacobimatrix f'(u,v) beschränkt ist.

Dann wissen wir, dass obiges Anfangswertproblem eindeutig lösbar ist.

Wenn ich die Aufgabenstellung richtig interpretiere sollst Du auch noch zeigen, dass die eindeutig bestimmte Lösung des Anfangswertproblems auf dem Intervall $[0, [mm] \infty)$ [/mm] existiert.

Ihr hattet mit Sicherheit Sätze, die Aussagen über das maximale Existenzintervall machen. Schau mal nach.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9h 12m 11. Takota
DiffGlGew/Globaler Existenzsatz
Status vor 10h 33m 1. homerq
SVektoren/Raumwinkel errechnen
Status vor 14h 16m 6. leduart
DiffGlGew/Loesung DGL
Status vor 21h 33m 3. fred97
S8-10/Rationalisieren des Nenners
Status vor 1d 17h 32m 6. HJKweseleit
UNum/Skizzieren einer Menge
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]