matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExistenzbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Existenzbeweis
Existenzbeweis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenzbeweis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:49 Mi 09.11.2005
Autor: wolverine2040

Hi Leute,

Ich sitze mal wieder an einem Problem, habe auch "eigentlich" eine Lösung, weiß aber nicht, ob das mathematisch so begründet ist:

Angenommen: [mm] x^{2} [/mm] > 2 , x > 0. Zeigen Sie:

Es ex. ein y : ( 0 < y < x ) [mm] \and [/mm] ( [mm] y^{2} [/mm] > 2 )

Ich habe mir nun überlegt, das ich als y doch nehmen könnte

y := x -  [mm] \bruch{1}{n} [/mm] , wobei ich mein n sehr groß wähle.

Wenn ich das dann in die 2. Bedingung einsetze ( [mm] y^{2} [/mm] > 2) erhalte ich erst einmal:

[mm] x^{2} [/mm] -  [mm] \bruch{2x}{n}+ \bruch{1}{n^{2}} [/mm] > 2

Durch umformen erhalte ich dann:

[mm] x^{2} [/mm] > 2 -  [mm] \bruch{1+2nx}{n^{2}} [/mm]

Nun könnte ich den Bruch als Folge definieren und n gegen unendlich laufen lassen so dass die Behauptung stimmt und ich ein y gefunden habe, so dass es für alle x aus R gilt.

Würde das als Beweis genügen oder gibt es da noch andere Kriterien, welche meine Behauptungen allein nicht genügen?

Wäre da für jede Hilfe sehr dankbar

        
Bezug
Existenzbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Do 10.11.2005
Autor: leduart

Hallo wolverine
das n gegen unendlich ist schlecht! dann konvergiert ja y gegen x!
Du musst von der Def von > ausgehen! [mm] x^{2}>2 [/mm] heisst es existiert ein [mm] \epsilon>0 [/mm] mit x + [mm] \epsilon=\wurzel{2} [/mm] wähle y= [mm] \wurzel{2} +\epsilon/2 [/mm]
Oder fang mit [mm] x^{2}=2+d [/mm] an, dann brauchst du länger um ein geeignetes y zu finden!. oder [mm] y^{2}=2+d/2 [/mm]  

> Angenommen: [mm]x^{2}[/mm] > 2 , x > 0. Zeigen Sie:
>  
> Es ex. ein y : ( 0 < y < x ) [mm]\and[/mm] ( [mm]y^{2}[/mm] > 2 )
>  
> Ich habe mir nun überlegt, das ich als y doch nehmen
> könnte
>  
> y := x -  [mm]\bruch{1}{n}[/mm] , wobei ich mein n sehr groß wähle.
>  
> Wenn ich das dann in die 2. Bedingung einsetze ( [mm]y^{2}[/mm] > 2)
> erhalte ich erst einmal:
>  
> [mm]x^{2}[/mm] -  [mm]\bruch{2x}{n}+ \bruch{1}{n^{2}}[/mm] > 2
>  
> Durch umformen erhalte ich dann:
>  
> [mm]x^{2}[/mm] > 2 -  [mm]\bruch{1+2nx}{n^{2}}[/mm]
>  
> Nun könnte ich den Bruch als Folge definieren und n gegen
> unendlich laufen lassen so dass die Behauptung stimmt und
> ich ein y gefunden habe, so dass es für alle x aus R gilt.
>  
> Würde das als Beweis genügen oder gibt es da noch andere
> Kriterien, welche meine Behauptungen allein nicht genügen?

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]