matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExp- und Log-Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Exp- und Log-Funktionen
Exp- und Log-Funktionen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp- und Log-Funktionen: kurvendiskussion
Status: (Frage) beantwortet Status 
Datum: 11:38 Sa 11.03.2006
Autor: hexe23

Aufgabe
untersuche die funktion [mm] f(x)=x^3*e^{-x} [/mm]

brauche den defintionsbereich, symmetrie, unendlichkeitsverhalten, nullstellen, extremas, wendepunkte und sattelpunkte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exp- und Log-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Sa 11.03.2006
Autor: Fugre

Hallo Hexe,

wir sind keine Lösungsmaschine, wo sind denn deine Ansätze?
Wir wollen die Aufgaben mit euch lösen, damit ihr dabei möglichst
viel lernt.

Gruß
Nicolas

Bezug
                
Bezug
Exp- und Log-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Sa 11.03.2006
Autor: hexe23

wie soll ich das denn versuchen, wenn ich das nich kann??

Bezug
        
Bezug
Exp- und Log-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Sa 11.03.2006
Autor: Mueritz


> untersuche die funktion
>  f(x)= xhoch3 *e hoch -x
>  brauche den defintionsbereich, symmetrie,
> unendlichkeitsverhalten, nullstellen, extremas, wendepunkte
> und sattelpunkte.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Defitionsgereich:
also, wenn du einen grafikfähigen Taschenrechner hast kannst du die Funktion ganz einfach zeichnen und dann schauen. ansonsten musst du sie mal zeichnen.

Symmetrie:
um die Symmetrie zu berechnen musst du zuerst f(x) = f(-x) setzen, um zu schauen, ob der Graph der Funktion achsensymmetrisch ist. danach setzt du das eben errechnete f(-x) = -f(x). dadurch findest du heraus, ob die Funktion punktsymmetrisch zum Punkt P (0/0) ist.

Unendlichkeitsverhalten:
[mm] \limes_{x\rightarrow\infty} [/mm] f(x) , also der Funktion bestimmen

Extremas:
erste Ableitung der Funktion, also f'(x)=0 setzen und ausrechnen. ergebnisse in die zweite Ableitung einsetzen, das muss dann [mm] \not=0 [/mm] sein.somit hast du den x-wert der extremas errechnet.

wendepunkte:
ähnlich wie bei den Extremas, nur das du die 2. und 3. Ableitung nimmst.

Gruß Mueritz



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]