Experimentalphysik IV < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:28 Mi 29.04.2009 | Autor: | mb588 |
Aufgabe | a)
Die Aurichtung des Drehimpulses kann nur bezüglich einer der drei Raumachsen angegeben werden. Zeigen Sie, dass dementsprechend die x- und y-Komponente des Drehimpulses nicht gleichzeitig scharf gemessen werden können.
b)
In der Regel wird als Quantisierungsachse für den Drehimpuls die z-Achse genommen. Es kann aber auch eine andere Achse verwendet werden. Und die entsprechenden Eigenfunktionen können als Kombinationen der Eigenfunktion Operator [mm] L_{z} [/mm] mit gleichem l aber unterschiedlichen m dargestellt werden. Zeigen Sie zum Beispiel, dass [mm] Y_{x}=\bruch{1}{\wurzel{2}}*Y^{-1}_{1} [/mm] - [mm] Y^{1}_{1} [/mm] eine Eigenfunktion von Operator [mm] L_{x} [/mm] ist. Wie groß ist der entsprechende Eigenwert? |
Bei dieser Aufgabe habe sowohl bei a) als auch bei b) Probleme. :(
Mir ist das von der Vorstellung kaum klar und mir fehlt der Mathematische Ansatz zum lösen dieser Aufgabe.
Wäre cool wenn mir einer weiterhelfen könnte.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:42 Fr 01.05.2009 | Autor: | rainerS |
Hallo!
> a)
> Die Aurichtung des Drehimpulses kann nur bezüglich einer
> der drei Raumachsen angegeben werden. Zeigen Sie, dass
> dementsprechend die x- und y-Komponente des Drehimpulses
> nicht gleichzeitig scharf gemessen werden können.
>
> b)
> In der Regel wird als Quantisierungsachse für den
> Drehimpuls die z-Achse genommen. Es kann aber auch eine
> andere Achse verwendet werden. Und die entsprechenden
> Eigenfunktionen können als Kombinationen der Eigenfunktion
> Operator [mm]L_{z}[/mm] mit gleichem l aber unterschiedlichen m
> dargestellt werden. Zeigen Sie zum Beispiel, dass
> [mm]Y_{x}=\bruch{1}{\wurzel{2}}*Y^{-1}_{1}[/mm] - [mm]Y^{1}_{1}[/mm] eine
> Eigenfunktion von Operator [mm]L_{x}[/mm] ist. Wie groß ist der
> entsprechende Eigenwert?
> Bei dieser Aufgabe habe sowohl bei a) als auch bei b)
> Probleme. :(
> Mir ist das von der Vorstellung kaum klar und mir fehlt
> der Mathematische Ansatz zum lösen dieser Aufgabe.
Bei der a) geht es um die Unschärferelation. Welche Beziehung zwischen den Operatoren ist da wichtig?
Bei der b) musst du nur die Eigenschaften der Drehimpulsoperatoren benutzen. Am einfachsten geht das mit den Auf- un Absteigeoperatoren [mm] $L_{\pm} [/mm] = [mm] L_x\pm iL_y$, [/mm] d.h. [mm] $L_x [/mm] = [mm] \bruch{1}{2} [/mm] (L_++L_-)$. Du musst nur die bekannten Relationen
[mm] L_+ Y^m_l = \hbar\sqrt{(l-m)(l+m+1)} Y^{m+1}_l [/mm]
und
[mm] L_- Y^m_l = \hbar\sqrt{(l+m)(l-m+1)} Y^{m-1}_l [/mm]
benutzen.
Viele Grüße
Rainer
|
|
|
|