matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Exponentialfunktion
Exponentialfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Mo 27.10.2014
Autor: SchlechteFrage

Hi, in einem Beweis in meinem Skript zeigt der Professor [mm] \frac{e^x}{x^n}\ge\frac{x}{(n+1)!}, [/mm] x>=0. Das verstehe ich.
Dann soll daraus folgen [mm] \lim_{x\to\infty}\frac{e^x}{x^n}=\infty. [/mm] Wieso folgt das daraus? Wir schätzen doch nach unten ab...

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 27.10.2014
Autor: fred97


> Hi, in einem Beweis in meinem Skript zeigt der Professor
> [mm]\frac{e^x}{x^n}\ge\frac{x}{(n+1)!},[/mm] x>=0. Das verstehe
> ich.
>  Dann soll daraus folgen
> [mm]\lim_{x\to\infty}\frac{e^x}{x^n}=\infty.[/mm] Wieso folgt das
> daraus? Wir schätzen doch nach unten ab...


Es ist doch  [mm] $\limes_{x \rightarrow\infty}\frac{x}{(n+1)!}= \infty$ [/mm]

Wegen

    [mm] \frac{e^x}{x^n}\ge\frac{x}{(n+1)!} [/mm]  für x>0

folgt dann [mm] $\lim_{x\to\infty}\frac{e^x}{x^n}= \infty$ [/mm]

FRED

>  
> Danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mo 27.10.2014
Autor: SchlechteFrage2


> Es ist doch  [mm]\limes_{x \rightarrow\infty}\frac{x}{(n+1)!}= \infty[/mm]

Das ist mir klar.

> Wegen
>  
> [mm]\frac{e^x}{x^n}\ge\frac{x}{(n+1)!}[/mm]  für x>0
>
> folgt dann [mm]\lim_{x\to\infty}\frac{e^x}{x^n}= \infty[/mm]

Genau das verstehe ich nicht. Ich betrachte eine Funktion f für [mm] x\to\infty. [/mm] Dazu schätze ich nach unten ab f ab und betrachte eine neue Funktion g. Wenn g gegen [mm] \infty [/mm] geht, dann geht f gegen [mm] \infty. [/mm] Wieso ist das so? Geht das immer? Ich kenne den 3-Folgen-Satz, aber das passt dort auch irgendwie nicht rein oder irre ich mich? Danke.

Bezug
                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Mo 27.10.2014
Autor: fred97


> > Es ist doch  [mm]\limes_{x \rightarrow\infty}\frac{x}{(n+1)!}= \infty[/mm]
>  
> Das ist mir klar.
>  
> > Wegen
>  >  
> > [mm]\frac{e^x}{x^n}\ge\frac{x}{(n+1)!}[/mm]  für x>0
> >
> > folgt dann [mm]\lim_{x\to\infty}\frac{e^x}{x^n}= \infty[/mm]
>  
> Genau das verstehe ich nicht. Ich betrachte eine Funktion f
> für [mm]x\to\infty.[/mm] Dazu schätze ich nach unten ab f ab und
> betrachte eine neue Funktion g. Wenn g gegen [mm]\infty[/mm] geht,
> dann geht f gegen [mm]\infty.[/mm] Wieso ist das so? Geht das immer?
> Ich kenne den 3-Folgen-Satz, aber das passt dort auch
> irgendwie nicht rein oder irre ich mich? Danke.

Dann müssen wir uns offenbar darüber unterhalten, wie

   [mm] $\limes_{x \rightarrow\infty}f(x)= \infty$ [/mm]

definiert ist. Nämlich so:

Sei D eine nichtleere Teilmenge von [mm] \IR [/mm] , D sei nach oben nicht beschränkt und $f:D [mm] \to \IR$ [/mm] sei eine Funktion.

[mm] $\limes_{x \rightarrow\infty}f(x)= \infty$ [/mm]  : [mm] \gdw [/mm]

zu jedem c>0 ex. ein [mm] x_0=x_0(c) \in [/mm] D mit: f(x)>c für alle x [mm] \in [/mm] D mit x [mm] \ge x_0. [/mm]


Ist nun $g:D [mm] \to \IR$ [/mm] eine weitere Funktion und gilt f(x) [mm] \ge [/mm] g(x) für alle x [mm] \in [/mm] D, so folgt aus

    [mm] $\limes_{x \rightarrow\infty}g(x)= \infty$ [/mm]

mit obiger Def. sofort

     [mm] $\limes_{x \rightarrow\infty}f(x)= \infty$ [/mm]

FRED

Bezug
                                
Bezug
Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Mo 27.10.2014
Autor: SchlechteFrage2

Vielen lieben Dank für die Erklärung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]