matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: f(x)=e hoch x --> gerade
Status: (Frage) beantwortet Status 
Datum: 16:12 Mi 10.12.2008
Autor: FranziSemperFi

Aufgabe
Gegeben ist die Funktion f mit f(x)=e hoch x


a)Ermittle die Gleichung  der Geraden g durch die Punkte P1 (0/1)+P2(1/e) des Graphen der Funktion f.

Hallo Allerseits!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Bin neu hier und dringend auf eure Hilfe angewiesen...haben heute ein neues Thema in der Schule angefangen und eine Hausaufgabe bekommen wo ich wirklich GAR KEINE Idee hab was ich damit anfangen soll...

wäre lieb wenn ihr mir helfen könntet, ist auch echt dringend!!!

Liebe Grüße,

Franzi

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 10.12.2008
Autor: djmatey

Hi Franzi,

eine Geradengleichung hat immer die Form
g(x) = mx+b
Dabei ist m die Steigung der Geraden, b ist die y-Koordinate des Schnittpunktes von Gerade und y-Achse.
Es gilt also, m und b zu bestimmen.
b ist ja schon gegeben, schau mal genau hin!
Du musst also nur noch m berechnen. Da du zwei Punkte der Geraden gegeben hast, kannst du das mit Hilfe eines Steigungsdreiecks machen:
m = [mm] \bruch{\Delta y}{\Delta x} [/mm]


LG djmatey

Bezug
                
Bezug
Exponentialfunktion: ist mein lösungsansatz richtig
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 10.12.2008
Autor: FranziSemperFi

Danke für die schnelle Antwort =)
Weiß zwar nicht ob ich den richtigen Lösungsansatz nun habe aber ich habe etwas experimentiert..(;




[Externes Bild http://i38.tinypic.com/160rhbn.jpg]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Mi 10.12.2008
Autor: djmatey

Hallo,

deine Vorgehensweise ist prinzipiell richtig, aber du hast [mm] P_2 [/mm] falsch eingezeichnet. [mm] P_2 [/mm] hat doch die Koordinaten (1/e). Warum hast du ihn bei (1/5) eingezeichnet?
Probier's nochmal!
Ansonsten:
1.) n kannst du aus der Aufgabenstellung ablesen.
2.) Sobald du [mm] \Delta [/mm] x und [mm] \Delta [/mm] y einsetzt, schreibe kein [mm] \Delta [/mm] mehr vor die 4 bzw. 1

Du solltest auf die Steigung e-1 kommen. Viel Erfolg!

LG djmatey

Bezug
                                
Bezug
Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Mi 10.12.2008
Autor: FranziSemperFi

Tut mir Leid..wie man sicher schon gemerkt hat fällt Mathe mir "etwas" schwer...
Ich habe irrtümlich angenommen, das wir im Unterricht mal beigebracht bekommen haben das man für e alle reellen Zahlen einsetzen kann^^
Was ist  e nun?
Ich weiß einfach nicht wie ich das einzeichnen soll..

Ich glaube wenn ich das erstmal weiß, bin ich schon einen Schritt weiter in meinem Denkprozess.

Ich möchte mich aber nochmals für die immer schnellen Antworten bedanken =)

Lg,

Franzi

Bezug
                                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Mi 10.12.2008
Autor: Steffi21

Hallo, wir haben zwei Punkte [mm] P_1(0;1) [/mm] und [mm] P_2(1;e), [/mm] durch diese Punkte verläuft eine lineare Funktion, eine Gerade, die der Gleichung y=mx+n genügt, Ziel wird sein, m und n zu finden, setzen wir die Punkte ein:

[mm] P_1 [/mm] ergibt 1=m*0+n

[mm] P_2 [/mm] ergibt e=m*1+n

aus der 1. Gleichung erhalten wir 1=n, somit können wir n=1 in die 2. Gleichung einsetzen

e=m*1+1
e=m+1
m=e-1

als lautet die Gleichung y=(e-1)*x+1

eventuell fällt dir ja dieser Lösungsweg leichter

Steffi

Bezug
                                
Bezug
Exponentialfunktion: was ist e?
Status: (Frage) beantwortet Status 
Datum: 18:17 Mi 10.12.2008
Autor: FranziSemperFi

Tut mir Leid..wie man sicher schon gemerkt hat fällt Mathe mir "etwas" schwer...
Ich habe irrtümlich angenommen, das wir im Unterricht mal beigebracht bekommen haben das man für e alle reellen Zahlen einsetzen kann^^
Was ist  e nun?
Ich weiß einfach nicht wie ich das einzeichnen soll..

Ich glaube wenn ich das erstmal weiß, bin ich schon einen Schritt weiter in meinem Denkprozess.

Ich möchte mich aber nochmals für die immer schnellen Antworten bedanken =)

Lg,

Franzi

Bezug
                                        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 10.12.2008
Autor: Steffi21

Hallo, e ist keine beliebige reelle Zahl, e ist die "Eulersche Zahl" 2,7...., sie wird dir noch sehr sehr oft begegnen, Steffi

Bezug
                                                
Bezug
Exponentialfunktion: aw zur eulerschen zahl
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 10.12.2008
Autor: FranziSemperFi

dankeschön  steffi =) du hast mir damit wirklich sehr geholfen.

Lg,

Franzi

Bezug
        
Bezug
Exponentialfunktion: Eulersche Zahl
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 10.12.2008
Autor: james_brown

Da vertust du dich, e ist hier keine Variable (wie normalerweise x, wo du dann meistens Zahlen einsetzen kannst), sondern mit e wird die Eulersche Zahl abgekürzt, deren Wert ungefähr bei 2,71 liegt. Also ist e quasi eine normale Zahl, die jedoch, weil sie sehr wichtig ist, eine eigene Abkürzung bekommen hat.

Bezug
                
Bezug
Exponentialfunktion: aw zu e
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Mi 10.12.2008
Autor: FranziSemperFi

achso - dankeschön! =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]