matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Exponentialfunktion
Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 So 27.02.2011
Autor: Steffi2012

Aufgabe
In einem See wird zu einem Zeitpunkt x=0 eine bestimmte Anzahl von Fischen (Anfangsbestand der Fischpopulation) eingesetzt, die im Laufe der Zeit zunimmt. Da der See wegen seiner Größe nicht beliebig viele Fische ernähren kann, ist diese Zunahme nach oben beschränkt. Die folgende Funktion beschreibt diesen Wachstumsprozess:

[mm] $f(x)=\bruch{400*e^{0,1x}}{10+e^{0,1x}}$ [/mm]

Hierbei bezeichnet f(x) die Anzahl der Fische zum Zeitpunkt x in Jahren. Führen Sie Ihre Rechnung ohne Berücksichtigung der Maßeinheiten durch.

a) Geben Sie einen sinnvollen Definitionsbereich für f an.
b) Skizzieren sie den Graphen der Funktion in einem Koordinatensystem ($0 [mm] \le [/mm] x [mm] \le [/mm] 100$).
c) Ermitteln Sie, wie viele Fische ursprünglich in den See eingesetzt wurden.
d) Berechnen Sie, wie viele Fische der See maximal ernähren kann.
e) Markieren Sie in der Skizze den Punkt, an dem die Wachstumsgeschwindigkeit der Fischpopulation maximal ist. Begründen Sie Ihre Wahl. Geben Sie den zugehörigen Zeitpunkt an. Beschreiben Sie einen Lösungsansatz, mit dem dieser Zeitpunkt rechnerisch ermittel werden kann.
f) In dem See lebten zum Zeitpunkt x=0 schon 500 Fische einer anderen Fischart b. Nach 10 Jahren zählte man nur noch 300 B-Fische. Bestimmen Sie ausgehend von der Annahme, dass der Wachstumsprozess durch eine e-Funktion beschrieben wird, die Funktionsvorschrift b(x).
f) Berechnen Sie den Zeitpunkt, zu dem von der Fischart B nur noch 20% der Ausgangspoplulation vorhanden ist.

Hey Leute,
also zunächst zu a):
$36 [mm] \le [/mm] f [mm] \le [/mm] 400$
Ist dieser Definitionsbereich sinnvoll?
c) Müsste doch 36 sein, oder? Da x = 0.
d) Wie müsste der Ansatz hier lauten?

Danke!

LG

        
Bezug
Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 So 27.02.2011
Autor: MathePower

Hallo Steffi2012,

> In einem See wird zu einem Zeitpunkt x=0 eine bestimmte
> Anzahl von Fischen (Anfangsbestand der Fischpopulation)
> eingesetzt, die im Laufe der Zeit zunimmt. Da der See wegen
> seiner Größe nicht beliebig viele Fische ernähren kann,
> ist diese Zunahme nach oben beschränkt. Die folgende
> Funktion beschreibt diesen Wachstumsprozess:
>  
> [mm]f(x)=\bruch{400*e^{0,1x}}{10+e^{0,1x}}[/mm]
>  
> Hierbei bezeichnet f(x) die Anzahl der Fische zum Zeitpunkt
> x in Jahren. Führen Sie Ihre Rechnung ohne
> Berücksichtigung der Maßeinheiten durch.
>  
> a) Geben Sie einen sinnvollen Definitionsbereich für f
> an.
>  b) Skizzieren sie den Graphen der Funktion in einem
> Koordinatensystem ([mm]0 \le x \le 100[/mm]).
>  c) Ermitteln Sie, wie
> viele Fische ursprünglich in den See eingesetzt wurden.
>  d) Berechnen Sie, wie viele Fische der See maximal
> ernähren kann.
>  e) Markieren Sie in der Skizze den Punkt, an dem die
> Wachstumsgeschwindigkeit der Fischpopulation maximal ist.
> Begründen Sie Ihre Wahl. Geben Sie den zugehörigen
> Zeitpunkt an. Beschreiben Sie einen Lösungsansatz, mit dem
> dieser Zeitpunkt rechnerisch ermittel werden kann.
>  f) In dem See lebten zum Zeitpunkt x=0 schon 500 Fische
> einer anderen Fischart b. Nach 10 Jahren zählte man nur
> noch 300 B-Fische. Bestimmen Sie ausgehend von der Annahme,
> dass der Wachstumsprozess durch eine e-Funktion beschrieben
> wird, die Funktionsvorschrift b(x).
>  f) Berechnen Sie den Zeitpunkt, zu dem von der Fischart B
> nur noch 20% der Ausgangspoplulation vorhanden ist.
>  Hey Leute,
>  also zunächst zu a):
>  [mm]36 \le f \le 400[/mm]


Das ist doch der Wertebereich von f.


>  Ist dieser Definitionsbereich sinnvoll?
>  c) Müsste doch 36 sein, oder? Da x = 0.


[ok]


>  d) Wie müsste der Ansatz hier lauten?


Berechne den Grenzwert von f für [mm]x \to \infty[/mm]


>  
> Danke!
>  
> LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]