matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Exponentialfunktion - Erbe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Exponentialfunktion - Erbe
Exponentialfunktion - Erbe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion - Erbe: Korrektur/Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:04 So 25.11.2007
Autor: TH3H1GHL4ND3R

Aufgabe
Eine Tante vererbt dem Enkel 20716,83 Euro, die sie 12,5 Jahre zu einem Zinssatz von 6 Prozent angespart hat,  wie viel hat sie anfangs angelegt.

Hallo Ihr,

ich habe hier gerade eine Rechnung, die eigentlich leicht ist.



Also:

f ( x ) = c ⋅ a ^x = 20716 , 83 ⋅ 0 , 94 ^12 , 5 = 9559 , 20

Wenn ich das jetz vorwärts rechne, müsste doch wieder 20716,83 Euro rauskommen oder?

Also:

f ( x ) = 9559 , 20 ⋅ 1 , 06 ^12 , 5 = 19803 , 63

Der Taschenrechner bekommt aber nur etwas weniger als 20000 raus, liegt das an der Rundung? Wundert mich schon, dass der Unterschied so groß ist.



Also entweder stehe ich total auf dem Schlauch, oder es stimmt^^

Danke für eure Hilfe


ch habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/index.php/forum/Exponentialfunktion-Erbe-berechnen

        
Bezug
Exponentialfunktion - Erbe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 So 25.11.2007
Autor: MatheSckell

Was du gemacht hast sieht schon ziemlich richtig aus.

Es handelt sich hierbei nicht nur um eine Exponential-Funktion, sondern auch um ein exponentielles Wachstum. Dafür hast du praktisch schon die Funktionsgleichung aufgestellt. Hier nur nochmal etwas näher an der Aufgabe.

[mm] B(t)=B_{0}*q^{t} [/mm]

Aud Deutsch: Der Bestand des Erbe zum einem Zeitpunkt t ist gleich dem Bestand zum Zeitpunkt 0 multipliziert mit dem Prozentsatz hoch der Zeit, welche bis zum Zeitpunkt t vergangen ist.

Du musst jetzt nur noch einsetzen und nach [mm] B_{0} [/mm] umformen:

[mm] 20716,83=B_{0}*1,06^{12,5} [/mm]

[mm] B_{0}=\bruch{20716,83}{1,06^{12,5}}\approx [/mm] 10000

Wenn du den genauen Wert ausm Taschenrechner jetzt wieder in die Ursprungsformel einsetzt, dann kommt natürlich wieder das Erbe das der Enkel erhält heraus.




Bezug
                
Bezug
Exponentialfunktion - Erbe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 25.11.2007
Autor: TH3H1GHL4ND3R

stimmt, du hast recht.

aber ich verstehe nicht, warum meine lösung falsch ist (sie ist ja eindeutig falsch, weil das falsche rauskommt - aber warum????)

Danke

Bezug
                        
Bezug
Exponentialfunktion - Erbe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 25.11.2007
Autor: MatheSckell

Das liegt wahrscheinlich an deinem ersten Prozentsatz: 0, 94

Denn der Prozentsatz ist 6% also 1,06 und nicht 0,94





Bezug
                                
Bezug
Exponentialfunktion - Erbe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 So 25.11.2007
Autor: TH3H1GHL4ND3R

Ja, ich hab gedacht, man könnte das einfach rückwärts rechnen (1-0,06)

Mal ne andere blöde frage:

Kann man [mm] \wurzel{a} [/mm] - [mm] \wurzel{a*b} [/mm]
zusammenfassen? nicht oder?

danke^^


Bezug
                                        
Bezug
Exponentialfunktion - Erbe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 So 25.11.2007
Autor: MatheSckell

Da kann man was mit machen, ob es sinnvoll ist, ist ne andere Frage:

Du wandelst die Wurzeln in Potenzen um:

[mm] a^{\bruch{1}{2}}-(a*b)^{\bruch{1}{2}} [/mm]
[mm] a^{\bruch{1}{2}}-a^{\bruch{1}{2}}*b^{\bruch{1}{2}} [/mm]

Ausklammern
[mm] a^{\bruch{1}{2}}(1-b^{\bruch{1}{2}}) [/mm]

mehr geht net.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]