matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenExponentialfunktion Majorante
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - Exponentialfunktion Majorante
Exponentialfunktion Majorante < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfunktion Majorante: von cos(x)
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 23.08.2008
Autor: sommersonne

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe in einem Skript folgende "Aussage" gelesen:
Die Konvergenz der Trigonometrischen Funktionen folgt aus der Tatsache, dass die Exponentialfunktion eine Majorante ist, z.B.:
cos(x) = [mm] \summe_{i=0}^{\infty} ((-1)^n/(2n)!)x^{2n} [/mm] = [mm] \summe_{i=0}^{\infty} (c_n/n!)x^n [/mm] mit [mm] c_n\in\{-1,0,1\} [/mm]

Was mich verwirrt ist vor allem das letzte Gleichheitszeichen, denn
cos(x) = [mm] 1-x²/2!+x^4/4!-... [/mm]
[mm] \summe_{i=0}^{\infty} (c_n/n!)x^n [/mm] mit [mm] c_n\in\{-1,0,1\} [/mm] = [mm] (c_1)*x [/mm] + [mm] (c_2*x²)/2! +(c_3*x³)/3!+... [/mm]

Ist das beides gleich? Und muss man überhaupt [mm] c_n [/mm] nutzen, würde es nicht ausreichen wenn man  [mm] \summe_{i=0}^{\infty} (1/n!)x^n [/mm] als Majorante für cos(x) nutzt?


Liebe Grüße
sommersonne

        
Bezug
Exponentialfunktion Majorante: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Sa 23.08.2008
Autor: Merle23


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  
> ich habe in einem Skript folgende "Aussage" gelesen:
>  Die Konvergenz der Trigonometrischen Funktionen folgt aus
> der Tatsache, dass die Exponentialfunktion eine Majorante
> ist, z.B.:
>  cos(x) = [mm]\summe_{i=0}^{\infty} ((-1)^n/(2n)!)x^{2n}[/mm] =
> [mm]\summe_{i=0}^{\infty} (c_n/n!)x^n[/mm] mit [mm]c_n\in\{-1,0,1\}[/mm]
>  
> Was mich verwirrt ist vor allem das letzte
> Gleichheitszeichen, denn
> cos(x) = [mm]1-x²/2!+x^4/4!-...[/mm]
>   [mm]\summe_{i=0}^{\infty} (c_n/n!)x^n[/mm] mit [mm]c_n\in\{-1,0,1\}[/mm] =
> [mm](c_1)*x[/mm] + [mm](c_2*x²)/2! +(c_3*x³)/3!+...[/mm]
>  

Hast [mm] c_0 [/mm] vergessen.

> Ist das beides gleich?

Wenn man die [mm] c_n [/mm] entsprechend wählt, dann ja.

> Und muss man überhaupt [mm]c_n[/mm] nutzen,
> würde es nicht ausreichen wenn man  [mm]\summe_{i=0}^{\infty} (1/n!)x^n[/mm]
> als Majorante für cos(x) nutzt?
>  

Ja, würde ausreichen.

Aber allg. gilt diese Abschätzung (so wie ich sehe) nur für x [mm] \ge [/mm] 0 (da für negative x ja cos(x) auch mal größer exp(x) wird). Oder zumindest muss man in diesem Falle aufpassen, dass man alles richtig macht.

>
> Liebe Grüße
>  sommersonne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]