matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Exponentialgleichung
Exponentialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Di 26.09.2017
Autor: rabilein1

Aufgabe
In einem Mathe-Buch fand ich unter dem Stichwort "Exponentialgleichung" folgendes:
Exponentialgleichung heißt eine Gleichung, bei der die Variable im Exponenten einer Potenz vorkommt.  

Und dann war als Beispiel genannt:
[mm] 3^{x+1} [/mm] = [mm] 3^{2x+1} [/mm] + [mm] 3^{2x-1} [/mm]

Angeblich soll diese Aufgabe rechnerisch zu lösen sein...


Aus dem  [mm] 3^{2x+1} [/mm] + [mm] 3^{2x-1} [/mm] wurde gemacht / umgeformt zu [mm] 3^{2x}(3+\bruch{1}{3}) [/mm] = [mm] 10*3^{2x-1} [/mm]

Aber es gab keine richtigen (ausführlichen) Erklärungen zu diesen Umformungen. Wo kommt die "10" hier?
Anscheinend wurden da mehrere Schritte auf einmal gemacht bzw. irgendwelche Dinge vorausgesetzt.

Weiter ging es dann mit Logarithmen.

Ein Ergebnis habe ich dann zwar zeichnerisch gefunden mit x [mm] \approx [/mm] -0.0959 , aber man sollte wohl rechnerisch auf das Ergebnis kommen.

        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 26.09.2017
Autor: donquijote

Hallo,
vorausgesetzt bzw. benutzt wurden nur die grundlegenden Rechenregeln für Potenzen:
Aus 2x+1=2x-1+2 folgt [mm]3^{2x+1}=3^{2x-1}*3^2[/mm] und durch Ausklammern [mm]3^{2x+1}+3^{2x-1}=(3^2+1)*3^{2x-1}[/mm].
Der Zwischenschritt, zuerst [mm]3^{2x}[/mm] auszuklammern, womit man auf [mm](3+\frac 13)*3^{2x}[/mm] kommt, ist dabei meines Erachtens überflüssig und eher verwirrend.

Bezug
        
Bezug
Exponentialgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Di 26.09.2017
Autor: fred97


> In einem Mathe-Buch fand ich unter dem Stichwort
> "Exponentialgleichung" folgendes:
>  Exponentialgleichung heißt eine Gleichung, bei der die
> Variable im Exponenten einer Potenz vorkommt.  
>
> Und dann war als Beispiel genannt:
>  [mm]3^{x+1}[/mm] = [mm]3^{2x+1}[/mm] + [mm]3^{2x-1}[/mm]
>  Angeblich soll diese Aufgabe rechnerisch zu lösen
> sein...
>  
>
> Aus dem  [mm]3^{2x+1}[/mm] + [mm]3^{2x-1}[/mm] wurde gemacht / umgeformt zu
> [mm]3^{2x}(3+\bruch{1}{3})[/mm] = [mm]10*3^{2x-1}[/mm]
>  
> Aber es gab keine richtigen (ausführlichen) Erklärungen
> zu diesen Umformungen. Wo kommt die "10" hier?

Wo die 10 herkommt hat mein Vorredner schon erklärt.


> Anscheinend wurden da mehrere Schritte auf einmal gemacht
> bzw. irgendwelche Dinge vorausgesetzt.
>
> Weiter ging es dann mit Logarithmen.

Na ja, das würde ich erst am Ende machen !

Setze [mm] t=3^x. [/mm] Dann bekommen wit

[mm] $3t=3t^2+\frac{1}{3}t^2$. [/mm]

Da t [mm] \ne [/mm] 0 ist, vereinfacht sich das zu

[mm] $3=3t+\frac{1}{3}t$. [/mm]

Das liefert

$t= [mm] \frac{10}{9}$. [/mm]

Nun ist noch zu lösen

[mm] 3^x= \frac{10}{9}. [/mm]

Erst jetzt benutzt man den Logarithmus.

Das liefert dann $x  [mm] \approx [/mm] -0.0964$



>
> Ein Ergebnis habe ich dann zwar zeichnerisch gefunden mit x
> [mm]\approx[/mm] -0.0959 , aber man sollte wohl rechnerisch auf das
> Ergebnis kommen.  


Bezug
                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Di 26.09.2017
Autor: rabilein1

Danke an euch.

Einleuchtend, dass die Umformungen richtig sind, ist mir das jetzt schon

also z.B. dass [mm] 3^{2}+1=10, [/mm]

aber darauf, dass man auf diese Weise rechnerisch zu einer Lösung kommt, wäre ich nicht gekommen.

Eventuell ist das aber auch alles eine Frage der Übung.


Mein Hauptkritikpunkt an vielen Mathe-Büchern ist aber, dass sie oftmals ohne genaue Erklärung mehrere Schritte auf einmal machen.
Okay, im gegenteiligen Fall würde das vielleicht bewirken, dass die Bücher dreimal so dick und doppelt so teuer wären, und sich die Leute dann beschweren, warum alles so ausführlich erklärt wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]