matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenExponentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Exponentialgleichung
Exponentialgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:03 Mo 07.01.2008
Autor: Guguck

Aufgabe
4 * [mm] 2^x-1 [/mm] - [mm] 3^x [/mm] + 13 * [mm] 3^x-1 [/mm] = 6 * [mm] 2^x+1 [/mm] - 10 * [mm] 2^x+2 [/mm]

Hallo, wie soll ich diese Aufgabe lösen? Ich habe es bereits mit Kürzen und Umformen probiert, komme aber auf keine Lösung.

        
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Mo 07.01.2008
Autor: Herby

Hallo Christian,

schreib' mal deine Umformungen auf, dann können wir sie gemeinsam durchgehen.


Liebe Grüße
Herby

Bezug
                
Bezug
Exponentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Mo 07.01.2008
Autor: Guguck

4 * [mm] 2^x [/mm] - 1 + 10 * [mm] 2^x [/mm] - 2 - 6 * [mm] 2^x [/mm] + 1 = [mm] 3^x [/mm] - 13 * [mm] 3^x [/mm] - 1
[mm] 2^x [/mm] - [mm] 2(4^1 [/mm] + 10 - 6²) = [mm] 3^x(1 [/mm] - [mm] 13^1) [/mm]
-22 * [mm] 2^x [/mm] - 2 = -12 * [mm] 3^x [/mm]


Halt! Die Autokorrektur bringt ja meine Gleichung völlig durcheinander! :(

Es sollte [mm] 2^x [/mm] - 1 heißen, nicht [mm] 2^x[/mm]

Bezug
                        
Bezug
Exponentialgleichung: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mo 07.01.2008
Autor: Herby

Hi,


wir kriegen das schon hin :-)

wenn du den Exponenten zusammen dargestellt haben willst, dann musst du geschweifte Klammern drum setzen:

2^{x-1}  -->  [mm] 2^{x-1} [/mm]


war das so gemeint?


lg
Herby

Bezug
        
Bezug
Exponentialgleichung: auf den zweiten Blick
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:13 Mo 07.01.2008
Autor: Herby

Hallo nochmal,

so richtig was Vernünftiges rausbekommen tue ich aber nicht [haee]

   ---  stimmt die Aufgabe so??


lg
Herby

Bezug
                
Bezug
Exponentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 07.01.2008
Autor: Guguck

Aufgabe
4* 2^(x-1) [mm] -3^x [/mm] + 13*3^(x-1) = 6*2^(x+1) - 10*2^(x-2)

Tut mir Leid, die Aufgabe war jetzt wegen der Autokorrektur völlig "verhunz". Ich schreib sie jetzt nochmal mit ()-Klammern.

Bezug
                        
Bezug
Exponentialgleichung: zusammenfassen
Status: (Antwort) fertig Status 
Datum: 20:43 Mo 07.01.2008
Autor: Loddar

Hallo Guguck!


Forme hier zunächst um, indem Du die einzelnen Potenzen zerlegst.

Zum Beispiel: [mm] $2^{x-1} [/mm] \ = \ [mm] 2^x*2^{-1} [/mm] \ = \ [mm] 2^x*\bruch{1}{2^1} [/mm] \ = \ [mm] \bruch{1}{2}*2^x$ [/mm] .

Anschließend die gleichgemachten Potenzen zusammenfassen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]