Exponentialverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:04 Di 02.12.2014 | Autor: | GeMir |
Aufgabe | Seien [mm] $X_1, \ldots, X_n \overset{iid}{\sim} Exp(\lambda), \quad \lambda [/mm] > 0$ Weisen Sie nach, dass der Schätzer [mm] $\frac{n-1}{\sum_{i=1}^{n}{X_i}}$ [/mm] erwartungstreu für [mm] $\lambda$ [/mm] ist. |
[mm] $X_1, \ldots, X_n \overset{iid}{\sim} Exp(\lambda) \quad \Rightarrow \quad\sum_{i=1}^{n}{X_i} \sim \Gamma(\lambda, [/mm] n)$
[mm] $\Gamma(n+1) [/mm] = [mm] n\cdot\Gamma(n)$
[/mm]
[mm] $E\bigg(\frac{n-1}{\sum_{i=1}^{n}{X_i}}\bigg) [/mm] = [mm] \int_{0}^{\infty}{\frac{n-1}{x}\cdot \frac{\lambda^n}{\Gamma(n)}\cdot x^{n-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \int_{0}^{\infty}{\frac{n-1}{x}\cdot \frac{\lambda^n}{(n-1)\cdot\Gamma(n-1)}\cdot x^{n-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \int_{0}^{\infty}{\frac{n-1}{x}\cdot \frac{\lambda^n}{\Gamma(n-1)}\cdot x^{n-1}\cdot e^{-\lambda x}dx}\\ [/mm]
= [mm] \int_{0}^{\infty}{\frac{\lambda^{n-1}\cdot\lambda}{\Gamma(n-1)}\cdot x^{(n-1)-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \lambda\cdot\int_{0}^{\infty}{\frac{\lambda^{n-1}}{\Gamma(n-1)}\cdot x^{(n-1)-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \lambda$
[/mm]
Also erwartungstreu.
Stimmt's?
Und dem entsprechend:
[mm] $E\bigg(\frac{n}{\sum_{i=1}^{n}{X_i}}\bigg) [/mm] = [mm] \int_{0}^{\infty}{\frac{n}{x}\cdot \frac{\lambda^n}{\Gamma(n)}\cdot x^{n-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \int_{0}^{\infty}{\frac{n}{x}\cdot \frac{\lambda^{n-1}\cdot\lambda}{(n-1)\cdot\Gamma(n-1)}\cdot x^{n-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \lambda\cdot\int_{0}^{\infty}{\frac{n}{n-1}\cdot\frac{\lambda^{n-1}}{\Gamma(n-1)}\cdot x^{(n-1)-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \lambda\cdot\frac{n}{n-1}\cdot\int_{0}^{\infty}{\frac{\lambda^{n-1}}{\Gamma(n-1)}\cdot x^{(n-1)-1}\cdot e^{-\lambda x}dx}\\
[/mm]
= [mm] \lambda\cdot\frac{n}{n-1}$
[/mm]
Also nicht erwartungstreu.
...
Ja, die Lösung ist richtig und funktioniert wegen dem Satz, der besagt, sei $g(x)$ eine stetige Funktion, und [mm] $E\big(g(X)\big)$ [/mm] existiert, so gilt: [mm] $E\big(g(x)\big) [/mm] = [mm] \int_{-\infty}^{\infty}{g(x)\cdot f(x)dx}$ [/mm] wobei die $f(x)$ die Dichtefunktion von $X$ ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:55 Fr 12.12.2014 | Autor: | DieAcht |
Hallo GeMir!
> Ja, die Lösung ist richtig und funktioniert wegen dem
> Satz, der besagt, sei [mm]g(x)[/mm] eine stetige Funktion, und
> [mm]E\big(g(X)\big)[/mm] existiert, so gilt: [mm]E\big(g(x)\big) = \int_{-\infty}^{\infty}{g(x)\cdot f(x)dx}[/mm]
> wobei die [mm]f(x)[/mm] die Dichtefunktion von [mm]X[/mm] ist.
Richtig. Wegen der Existenz von [mm] $E(g(X))\$ [/mm] existiert die Dichte [mm] $f\$ [/mm] von [mm] $X\$.
[/mm]
|
|
|
|