matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungExponentialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Exponentialverteilung
Exponentialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Do 14.01.2016
Autor: Laura87

Aufgabe
Die zufällige Lebensdauer einer Batterie sei exponentialverteilt. D.h. dasnzugehörige W-Maß ist bestimmt durch die Dichte f (x)= [mm] \lambda e^{-\lambda * x} [/mm] für x [mm] \ge [/mm] 0

Wie groß ist die Wahrscheinlichkeit, dass die Lebensdauer der Batterie
a) mehr als vier Jahre beträgt
b) weniger als ein Jahr beträgt

Hallo,

ich ging in der Übung davon aus, dass ich es schnell lösen knn, jedoch bin ich jetzt verwirrt.

Für a hatte ich mir folgendes überlegt

P(A)= lebt mehr als vier Jahre

[mm] P(A)=\integral_{0}^{4}{f (x)dx} [/mm]

Mein übungsleiter meinte jedoch, dass das nicht richtig ist und ich die gegenwahrscheinlichkeit betrachten muss.

[mm] P(A^C)=1-\integral_{0}^{4}{f (x)dx}=1/e \approx [/mm] 0,37

Dh die Wahrscheinlichkeit, dass die Lebensdauer der Batterie mehr als 4 Jahre beträgt liegt bei 37%

Das verstehe ich jetzt aber nicht. Das, was ich mit [mm] P(A^C) [/mm] berechnet habe ist doch die Wahrscheinlichkeit  dafür, dass die Batterie weniger als vier Jahre lebt oder wo liegt mein Denkfehler?

Würde mich über eine Antwort sehr freuen
Gruß Laura

        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 14.01.2016
Autor: Gonozal_IX

Hiho,

dazu stelle ich dir die Gegenfrage: Warum berechnest du denn [mm] $\int_0^4 [/mm] f(x) dx$

Was ist das denn in deinen Augen?

Gruß,
Gono

Bezug
                
Bezug
Exponentialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Do 14.01.2016
Autor: Laura87

Hallo,

danke zunächst für die Antwort.

Damit möchte ich P(A) berechnen. Also die Wahrscheinlichkeit, dass die Batterie mehr als vier Jahre lebt.

Bezug
                        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Do 14.01.2016
Autor: Thomas_Aut

Hallo,

das ist aber falsch!
denn:

für a<b gilt

[mm] $\mathbb{P}[a \le [/mm] X [mm] \le [/mm] b] = [mm] \int_{a}^{b}f(x)dx$ [/mm]



Lg

Bezug
                        
Bezug
Exponentialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Do 14.01.2016
Autor: Gonozal_IX

Hiho,

> Damit möchte ich P(A) berechnen. Also die
> Wahrscheinlichkeit, dass die Batterie mehr als vier Jahre
> lebt.

Das sehe ich,  allerdings begründest du das nicht.
Und genau darauf zielte meine Frage ab.
Warum sollte diese Gleichheit gelten, das behauptest du einfach.

Was ist denn $ [mm] \int_0^x [/mm] f (x) dx $??

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 39m 23. donp
UTopoGeo/indirekter Beweis
Status vor 13h 13m 16. donp
VK60Ana/Übungsserie 2, Aufgabe 3
Status vor 1d 7h 22m 8. sancho1980
MSons/Abschätzung Kreisfunktionen
Status vor 1d 8h 11m 3. Chris84
Mathematica/Mathematica
Status vor 1d 11h 50m 14. fred97
UAnaRn/Hinreich. Potentialkriterium
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]