matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisExtrema-zweier veränderlicher
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Extrema-zweier veränderlicher
Extrema-zweier veränderlicher < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema-zweier veränderlicher: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:17 Mi 29.09.2004
Autor: DerLa80

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
mein Problem ist es Extremwerte von Funktionen zweier veränderlicher Variablen zu bestimmen. Eine spezielle Aufgabe an der ich zur Zeit hänge
ist folgende:

f(x,y)=(1-x²)*y
        =y-x²y

f'(x)=2xy
f''(x)=2y

f''(xe)!=0
f'(xe)=0
0=2xy - so und da wäre mein Problem, sollte ich bis hier alles richtig gemacht haben. Wie gehts jetzt weiter?

Die Ableitungen nach y:
f'(y)=1-x
f''(y)=0

f''(ye)!=0 - und sehe ich das hier richtig dass es hier keine Extrema gibt?


Hoffe mir kann einer helfen

----
Gruß Lars

        
Bezug
Extrema-zweier veränderlicher: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 29.09.2004
Autor: Micha

Hallo!
Zu dieser Funktion gibt es ganz anschaulich gar keine Extrema!

Wie komme ich zu dieser Erkenntnis? Nun, ohne Ableitungen zu bestimmen versuche ich, mir die Funktion im Kopf erstmal vorzustellen.

Ich habe dir das auch mal eben skizziert:
[Dateianhang nicht öffentlich]

Das wäre meine Funktion, wenn y konstant 1 setze und sie entlang dieser zur x-z-Ebene parallelen Ebene "aufschneide". Eine nach unten geöffnete Parabel, die als mögliches Extremum nur den Scheitel der Parabel bei der Stelle$ x=0 $besitzt. Diese Funktion nenne ich [mm] $f_y(x,\hat [/mm] y) = [mm] 1-x^2$ [/mm]
Das ist aber nur ein Teil der Wahrheit, denn wenn ich jetzt in die "Tiefe" des Bildes gehe, dann wird meine gesamte Parabel um y verschoben. Anschaulich betrachtet: wenn ich nun meine mögliche Extremalstelle [mm]x=0[/mm] konstant halte und y variiere, bekomme ich keine Extremstelle, weil die Funktion [mm] $f_x(\hat [/mm] x , y) = y$ keine Extrema besitzt.

Beide Hilfsfunktionen müssen ein Extremum besitzen. Diese Veranschaulichung ist analog mit dem Lösen des Gleichungssystems, wenn man die Jacobi-Matrix gleich der Nullmatrix setzt.

Nunja, ich hoffe das genügt dir als Begründung!

Gruß Micha

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Extrema-zweier veränderlicher: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:19 Do 30.09.2004
Autor: DerLa80

Danke für Deine schnelle Antwort.
War wohl ein wenig blind,
hätte mir selber die funktion einfach mal richtig hinschreiben sollen:
f(x,y)=-yx²+y
Dann wärs ja logisch gewesen.

---
Gruß Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]